Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Angela jolie

Cho hình vuông ABCD cạnh là a và N là một điểm trên cạnh AB. Tia CN cắt tia DA tại E. Trên tia đối của tia BA lấy điểm F sao ch oBF=DE. Gọi M là trung điểm của EF.

a) Chứng minh tam giác ACE đồng dạng với tam giác BCM.

b) Xác định vị trí điểm N trên AB sao cho diện tích tứ giác ACFE gấp ba lần diện tích hình vuông ABCD.

Vũ Huy Hoàng
6 tháng 7 2019 lúc 17:14

a) ΔACE=ΔBCF (c.g.c) ⇒ CE=CF; \(\widehat{ECF}=90^0\) ⇒ ΔECF vuông cân tại C.

⇒ Δ CME vuông cân tại M, lại có ΔABC vuông cân tại B

\(\frac{AC}{EC}=\frac{BC}{MC}\), lại có \(\widehat{ACE}=\widehat{BCM}=45^0-\widehat{ECB}\)

⇒ ΔACE~ΔBCM (c.g.c)

b) \(S_{ACFE}=3.S_{ABCD}\Rightarrow2S_{ABC}+2S_{BCF}+2S_{AEF}=6S_{ABCD}\)

\(AB.BC+BC.BF+AE.AF=6AB.BC\)

\(AB^2+AB\left(AB+AE\right)+AE\left(2AB+AE\right)=6AB^2\)

\(4AB^2-3AB.AE-AE^2=0\)

\(\left(AB-AE\right)\left(4AB+AE\right)=0\)

\(AB=AE\)

Khi đó AN là đường trung bình của ΔDEC

⇒ N là trung điểm của AB

Vậy khi N là trung điểm AB thì diện tích tứ giác ACFE gấp 3 lần diện tích hình vuoong ABCD


Các câu hỏi tương tự
Lunox Butterfly Seraphim
Xem chi tiết
Trần Hạo Thiên
Xem chi tiết
Hoai Bao Tran
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
Sầu riêng
Xem chi tiết
Bruh
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Triều Nguyễn Quốc
Xem chi tiết
Nguyễn Trọng Chiến
Xem chi tiết