Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Toman_Symbol

Cho hình vuông ABCD cạnh có độ dài bằng a. Trên cạnh AD lấy điểm M và cạnh CD lấy điểm N sao cho góc MBN = 45°. Gọi E và F lần lượt là giao điểm của BM, BN với AC. a/ Chứng minh: Tứ giác BENC nội tiếp, từ đó suy ra NE vuông góc với BM b/ Gọi I là giao điểm của NE và MF. Chứng minh: BI vuông góc với MN. c/ Tìm vị trí của M và N để diện tích tam giác MDN lớn nhất. Tính diện tích lớn nhất đó theo a.

Nguyễn Việt Lâm
12 tháng 1 lúc 10:55

a.

DO ABCD là hình vuông \(\Rightarrow\widehat{ACD}=45^0\)

\(\Rightarrow\widehat{ACD}=\widehat{EBN}\)

Mà \(\widehat{ACD}\) và \(\widehat{EBN}\) cùng chắn EN

\(\Rightarrow\) Tứ giác BENC nội tiếp

\(\Rightarrow\widehat{BEN}+\widehat{BCN}=180^0\)

\(\Rightarrow\widehat{BEN}=180^0-\widehat{BCN}=180^0-90^0=90^0\)

\(\Rightarrow NE\perp BM\) tại E

b.

Tương tự ta có tứ giác ABFM nội tiếp (\(\widehat{MAF}=\widehat{MBF}=45^0\) cùng chắn MF)

\(\Rightarrow\widehat{BFM}+\widehat{BAM}=180^0\)

\(\Rightarrow\widehat{BFM}=90^0\Rightarrow MF\perp BN\)

\(\Rightarrow I\) là trực tâm của tam giác BMN

\(\Rightarrow BI\perp MN\)

Nguyễn Việt Lâm
12 tháng 1 lúc 11:13

c.

Gọi H là giao điểm BI và MN

Do E và F cùng nhìn MN dưới 1 góc vuông 

\(\Rightarrow\) Tứ giác EFMN nội tiếp

\(\Rightarrow\widehat{EMN}+\widehat{EFN}=180^0\)

Mà \(\widehat{EFN}+\widehat{EFB}=180^0\)

\(\Rightarrow\widehat{EMN}=\widehat{EFB}\)

Lại có tứ giác ABFM nội tiếp (A và F cùng nhìn BM dưới 1 góc vuông)

\(\Rightarrow\widehat{EFB}=\widehat{AMB}\) (cùng chắn AB)

\(\Rightarrow\widehat{EMN}=\widehat{AMB}\)

\(\Rightarrow\Delta_VAMB=\Delta_VHMB\left(ch-gn\right)\)

\(\Rightarrow AM=HM\)

Đồng thời suy ra \(AB=BH\Rightarrow BH=BC\) (do AB=BC)

Theo Pitago: \(\left\{{}\begin{matrix}HN=\sqrt{BN^2-BH^2}\\CN=\sqrt{BN^2-BC^2}\end{matrix}\right.\) \(\Rightarrow CN=HN\)

\(\Rightarrow AM+CN=MH+NH=MN\)

\(\Rightarrow MD+DN+MN=MD+DN+AM+CN=AD+CD=2a\)

Pitago: \(MN^2=DM^2+DN^2\ge\dfrac{1}{2}\left(DM+DN\right)^2\Rightarrow MN\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)

\(\Rightarrow2a-\left(DM+DN\right)\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)

\(\Rightarrow2a\ge\left(\dfrac{2+\sqrt{2}}{2}\right)\left(DM+DN\right)\ge\left(2+\sqrt{2}\right).\sqrt{DM.DN}\)

\(\Rightarrow DM.DN\le\left(6-4\sqrt{2}\right)a^2\)

\(\Rightarrow S_{MDN}=\dfrac{1}{2}DM.DN\le\left(3-2\sqrt{2}\right)a^2\)

Dấu "=" xảy ra khi \(DM=DN=\left(\sqrt{6}-\sqrt{2}\right)a\)

Nguyễn Việt Lâm
12 tháng 1 lúc 11:14

loading...


Các câu hỏi tương tự
Minh Ngọc
Xem chi tiết
NGỌC LINH
Xem chi tiết
Nguyễn Hồng Ngọc
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
trần hân
Xem chi tiết
Tô Mì
Xem chi tiết
Thành đz
Xem chi tiết
Phạm Trọng Khải
Xem chi tiết