Bài 5: Diện tích hình thoi

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn võ Gia khiêm

Cho hình thoi ABCD gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA Chứng minh tứ giác EFGH là hình chữ nhật B cho hai đường chéo AC=8cm BD=10 cm I là giao điểm của ac và bd tính diện tích hình tam giác ABI nhanh nhe mình cần gấp ạ

Thanh Hoàng Thanh
18 tháng 1 2022 lúc 9:16

Xét tam giác ABD:

E là trung điểm AB (gt).

H là trung điểm AD (gt).

\(\Rightarrow\) EH là đường trung bình.

\(\Rightarrow\) EH // BD; EH = \(\dfrac{1}{2}\) BD (Tính chất đường trung bình). (1)

Xét tam giác CBD:

F là trung điểm BC (gt).

G là trung điểm CD (gt).

\(\Rightarrow\) FG là đường trung bình.

\(\Rightarrow\) FG // BD; FG = \(\dfrac{1}{2}\) BD (Tính chất đường trung bình). (2)

Xét tamgiacs ACD:

H là trung điểm AD (gt).

G là trung điểm CD (gt).

\(\Rightarrow\) HG là đường trung bình.

\(\Rightarrow\) HG // AC (Tính chất đường trung bình).

Mà AC \(\perp\) BD (Tứ giác ABCD là hình thoi). 

\(\Rightarrow\) HG \(\perp\) BD.

Lại có: EH // BD (cmt).

\(\Rightarrow\) EH \(\perp\) HG.

Từ (1) và (2) \(\Rightarrow\) EH // FG; EH = FG.

\(\Rightarrow\) Tứ giác EFGH là hình bình hành (dhnb).

Mà EH \(\perp\) HG (cmt).

\(\Rightarrow\) Tứ giác EFGH là hình chữ nhật (dhnb).

b) Tứ giác ABCD là hình thoi (gt). 

\(\Rightarrow\) AC cắt BD tại trung điểm mỗi đường (Tính chất hình thoi).

Mà I là giao điểm của AC và BD (gt.)

\(\Rightarrow\) I là trung điểm của AC và BD.

\(\Rightarrow\left\{{}\begin{matrix}AI=\dfrac{1}{2}AC=\dfrac{1}{2}.8=4\left(cm\right).\\IB=\dfrac{1}{2}BD=\dfrac{1}{2}.10=5\left(cm\right).\end{matrix}\right.\)

Xét tam giác ABI: AI \(\perp\) BI (AC \(\perp\) BD).

\(\Rightarrow\) Tam giác ABI vuông tại I.

\(\Rightarrow S_{\Delta ABI}=\dfrac{1}{2}AI.IB=\dfrac{1}{2}.4.5=10\left(cm^2\right).\)

\(\perp\)


Các câu hỏi tương tự
Nguyễn võ Gia khiêm
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Minh Tuyền
Xem chi tiết
Ngo Bảo
Xem chi tiết
Hưng Việt Nguyễn
Xem chi tiết
Hàn Chính Thiên
Xem chi tiết
kimlimly
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Dương Vũ
Xem chi tiết