Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Câu 2 : (7đ) Cho hình thang MNPQ ( MN // PQ ) . Gọi A, B, lần lượt là trung điểm của MQ, NP. AB cắt MP tại I, cắt NQ tại K.Chứng minh MA = AP, NB = BQ
Cho hình thang MNPQ ( MN // PQ ). I là trung điểm của MQ, đường thẳng qua I song song với MN cắt NP tại K :
a) Cho MN = 8cm, PQ =10cm. Tính IK
b) Kẻ đường chéo MP cắt IK tại H. Tính HI
giúp mik vs ạ
Cho hình thang ABCD ( AB // CD; AB < CD ). Trên AD lấy AE = EM = MP = PD. Trên BC lấy BF = FN = NQ = QC
a) Chứng minh M, N lần lượt là trung điểm của AD và BC;
b) Tứ giác EFQP là hình gì? Vì sao?
c) Tính MN, EF, PQ biết AB = 8cm và CD = 12cm;
d) Kẻ AH vuông góc CD tại H và AH = 10cm. Tính diện tích tứ giác ABCD.
em cảm ơn ạ!
Cho hình thang ABCD (AD //CB), AD = 5cm; BC = 8cm. Gọi E, K lần lượt là trung điểm
của AB và DC. Gọi F là giao điểm của EK và BD.
a. Cm: EK // AD.
b. Cm: FB = FD.
c. Tính FK?EF?
Cho tam giác ABC ( AB< AC). Trên AB lấy M, AC lấy N sao cho BM=CN. Gọi E là trung điểm của MN, F là trung điểm của BC, I là trung điểm BN.
a) CM tam giác IEF cân
b) Đường thẳng EF cắt AB, AC tại G và H. CM AG=AH
Cho ∆ABC. Trên AB lấy các điểm M, N sao cho AM = MN = NB. Gọi A’; B’ lần lượt là trung điểm của BC; CA. BB’ cắt CN tại P, AA’ cắt CM tại Q. Biết AB = 4cm. Tính PQ. Nhanh lên các bạn mình còn phải nộp bài vào tối nay nữa.
Bài 1: Cho hình thang ABCD ( có AB// CD). Gọi E là trung điểm của AD. Kẻ đường thẳng qua E song song với AB và cắt BC tại F.
a) Chứng minh F là trung điểm của BC.
b) Cho AB = 4; CD =12. Tính EF.
Bài 2: Cho hình thang ABCD (có AB // CD; AB < CD). Gọi E, F, G lần lượt là trung điểm của AD, AC, BD.
a) Chứng minh E, F, G thẳng hàng.
b) Chứng minh EF = (CD-AB)/2.
Bài 1: Cho hình thang ABCD ( có AB// CD). Gọi E là trung điểm của AD. Kẻ đường thẳng qua E song song với AB và cắt BC tại F.
a) Chứng minh F là trung điểm của BC.
b) Cho AB = 4; CD =12. Tính EF.
Bài 2: Cho hình thang ABCD (có AB // CD; AB < CD). Gọi E, F, G lần lượt là trung điểm của AD, AC, BD.
a) Chứng minh E, F, G thẳng hàng.
b) Chứng minh EF = (CD-AB)/2.
Bài 1: Cho △ ABC, đường trung tuyến AM. Gọi D là trung điểm của AM. Gọi E là giao của BD và AC. Kẻ MN // BE cắt AC tại N. CM rằng:
a) DE là đường trung bình của △AMN;
b) N là trung điểm của EC;
c) AE = EN = NC
Bài 2: Cho △ ABC, các đường trung tuyến AM,CN cắt nhau tại K. Gọi I, H lần lượt là trung điểm của AK, CK. CM rằng:
a) MN là đường trung bình của △ BAC
b) MN // IH
c) MN = IH
Bài 3: Cho △ ABC, đường trung tuyến AM. Lấy điểm D, E thuộc cạnh AB sao cho AD = DE = EB. Gọi I là giao của CD và AM. CM rằng:
a) ME // DC
b) I là trung điểm của AM
c) DC = 4DI