BÀI 1: Cho hình vuông ABCD tâm I. Trên AB,AD lây M và E sao cho AM=AE. Trên BC lâyE(-1;7) sao cho AM=BF. Gọi H là hình chiếu của M trên EF. Phương trình đường tròn ngoại tiếp ABH là x^2+y^2+4x-2y-15=0 và phương trình đường thẳng AF: x-2=0. Tìm A, H biết hoành độ điểm A và hoành độ điểm H lớn hơn 0
BÀI 2: Cho ABC với A(3;3), B(-1;0); C(2;4). Tìm toạ độ D thuộc AB sao cho có hình vuông DEFG với E thuộc AC, F,G thuộc BC
BÀI 3: Cho ABC cân tại C có S = 8 và phương trình đường cao CH: x-1=0. Gọi I là hình chiếu vuông góc của A trên BC. Trên tia AI lây E(-1;7) sao cho AE=AC. Tìm tọa độ các đỉnh ∆ABC biết tung độ điểm A và tung độ điểm C lớn hơn 6
Trong mặt phẳng Oxy, cho hình thang ABCD có đáy lớn CD=2AB, điểm C (-1;-1), trung điểm của AD là điểm M(1;-2). Tìm tọa độ điểm B, biết diện tích của tam giác BCD bằng 8, AB=4 và D có hoành độ nguyên dương.
Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD có N là trung điểm của cạnh CD và đường thẳng BN có phương trình là \(13x-10y+13=0\), điểm \(M\left(-1;2\right)\) thuộc đoạn thẳng AC sao cho AC=4AM. Gọi H là điểm đối xứng với N qua C. Tìm tọa độ các đỉnh A, B, C, D biết rằng 2AC=2AB và điểm H thuộc đường thẳng \(\Delta:2x-3y=0\)
Trong mặt phẳng với hệ trục tọa độ Oxy cho hình bình hành ABCD có góc ABC nhọn, đỉnh A(-2;-1). Gọi H, K, E lần lượt là hình chiếu vuông góc của A trên các đường thẳng BC, BD, CD. Phương trình đường tròn ngoại tiếp HKE là (C) : \(x^2+y^2+x+4y+3=0\). Tìm tọa độ các đỉnh B, C, D biết H có hoành độ âm, C có hoành độ dương và nằm trên đường thẳng \(x-y-3=0\)
Cho hình vuông ABCD có M, N lần lượt là trung điểm của BC,CD ; H là giao điểm của AM và BN . Xác định tọa độ các đỉnh của hình vuông biết AB: x-y+4=0 . d(H,AB) = \(\dfrac{8\sqrt{2}}{5}\) , điểm N thuộc đường thẳng d: x-2y-6=0 và N có hoành độ dương
Trong mặt phẳng Oxy, cho hình thang abcd có ad // bc và ad=3bc. gọi m và n lần lượt là trung điểm của ab và cd. đường thẳng qua m, vuông góc với ac và đường thẳng qua n vuông góc với bd cắt nhau tại p. tìm tọa độ các đỉnh hình thang biết m(1;-1), n(5;3), p(-1;3)
Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD có M,N lần lượt là trung điểm của các cạnh BC, CD. Tìm tọa độ đỉnh B và điểm M, biết điểm N(0; -2), M có hoành độ nguyên, đường thẳng AM có phương trình x+2y-2=0 * giúp mình với ạ, chi tiết càng tốt nhaaa
Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD. Điểm N(1;-2) thỏa mãn 2vecto NB+vecto NC=0 và điểm M(3;6) thuộc đường thẳng chứa cạnh AD. gọi H là hình chiếu vuong góc của A xuống đường thẳng DN. Xác định tọa độ các đỉnh của hình vuông ABCD biết khoảng cách từ H đến cạnh CD bằng \(\frac{12\sqrt{2}}{13}\) và đỉnh A có hoành độ là số nguyên lớn hơn 2
Cho hình bình hành ABCD có diện tích bằng 4. Biết tọa độ A(1;0), B(2;0) và giao điểm I của hai đường chéo AC, BD nằm trên đường thẳng y=x. Hãy tìm tọa độ các đỉnh còn lại của hình bình hành ABCD