Bài tập cuối chương VIII

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho hình thang \(ABCD\left( {AB//CD} \right)\), có hai đường chéo \(AC\) và \(DB\) cắt nhau tại \(O\). Biết \(AB = 8cm,CD = 20cm\). Khi đó \(\Delta AOB\backsim\Delta COD\) với tỉ số đồng dạng là

A.\(k = \frac{2}{3}\).                        

B. \(k = \frac{3}{2}\).                       

C. \(k = \frac{2}{5}\).                       

D. \(k = \frac{5}{2}\).

Kiều Sơn Tùng
14 tháng 9 2023 lúc 23:02

Đáp án đúng là C

 

Vì \(ABCD\) và \(AB//CD\) nên \(\widehat {OAB} = \widehat {OCD}\) (hai góc ở vị trí so le trong)

Xét tam giác \(AOB\) và tam giác \(COD\) có:

\(\widehat {OAB} = \widehat {OCD}\) (chứng minh trên)

\(\widehat {AOB} = \widehat {COD}\) (hai góc đối đỉnh)

Suy ra, \(\Delta AOB\backsim\Delta COD\) (g.g)

Suy ra, tỉ số đồng dạng  \(k = \frac{{AB}}{{CD}} = \frac{8}{{20}} = \frac{2}{5}\).


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết