Sửa đề: Đường caoBH
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
Do đo: ΔBDC đồng dạng với ΔHBC
b: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)
\(HC=\dfrac{BC^2}{CD}=9\left(cm\right)\)
HD=CD-CH=16(cm)
Sửa đề: Đường caoBH
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
Do đo: ΔBDC đồng dạng với ΔHBC
b: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)
\(HC=\dfrac{BC^2}{CD}=9\left(cm\right)\)
HD=CD-CH=16(cm)
#cau_hoi_co_loi_giai _hinh_thang.
Cho hình thang ABCD có AB//CD và hai đường chéo vuông góc với nhau \(AC\perp BD\). Biết \(AC=4\), và \(BD=3\).
a) Tính \(AB+CD=?\)
b) Tính độ dài đường cao \(BH=?\) của hình thang ABCD?
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).1)Chứng minh tam giác ADH bằng tam giác BCK. 2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.3)Giảsử2ABCDBK+=.Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).
1)Chứng minh tam giác ADH bằng tam giác BCK.
2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3)Giảsử BK=(AB+CD)/2.Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang ABCD ( AB//CD, AB<CD) hai tia phân giác của góc B và góc C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB,CD lần lượt tại E và F
a) Tìm các hình thang
b) Chứng minh rằng tam giác BEI cân
cho hình thang ABCD ( AB // CD ). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc đáy CD. Chứng minh AD + BC = DC. ( nếu có thể thì giúp mình vẽ hình luôn ạ. Cảm ơn).
Cho hình thang ABCD có AB//CD các đường phân giác của các góc A và B cắt nhau tại điểm k thuộc cạnh CD các đường phân giác của các góc C và d cách nhau tại điểm I chứng minh AD + BC = CD chứng minh ia = ib
Bài 6. Cho hình thang vuông ABCD có A = D = 90°. Đường chéo BD vuông góc với cạnh bên BC và BD = BC
a) Tính các góc của hình thang.
b) AC là phân giác góc A.
Bài 1 : Cho hình thang ABCD (AB//CD) .Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc đáy CD. Chứng minh AD+BC= DC
Bài 2 : Cho ΔABC vuông cân tại A , ở phía ngoài ΔABC , vẽ Δ BCD vuông cân tại B . Tứ giác abcd là hình gì ? Vì sao ?
Cho hình thang ABCD (AB//CD), biết AD+BC=AB. Hai tia phân giác của hai góc C và D cắt nhau tại E. Chứng minh rằng 3 điểm A,B,E thẳng hàng.
(Không dùng tính chất hình thang cân và đường trung bình nha!)