cho hình thang ABCD (AB//CD), M là trung điểm của AD, N là trung điểm của BC. Gọi P và Q lần lượt là giao điểm của MN với BD và AC. Cho CD= 8cm, MN= 6cm
a) Tính AB
b) Tính MP, PQ,QN ?
cho hình thang abcd (ab//cd) ab=1/2cd gọi m n lần lượt là trung điểm của ad bc đoạn thẳng mn cắt bd tại p cắt ac taiq cmr mp=pq=qn
Cho hình thang ABCD (AB//CD), đáy lớn AB. M,N,P,Q theo thứ tự là trung điểm của các đoạn thẳng AD,BC,AC,BD.
a) Chứng minh rằng bốn điểm M,N,P,Q nằm trên một đường thẳng.
b) Cho AB=a, CD=b (với a>b). Tính độ dài các đoạn thẳng MN,PQ.
1)Cho hình thang ABCD (AB là đáy bé).Một đường thẳng song song với AB cắt AD,BD,AC,BC lần lượt tại M,N,P,Q.
CMR: MN=PQ
2)Cho hình thang ABCD (AB//CD) . M là trung điểm của CD . MA cắt BD tại I ; MB cắt AC tại K .
CMR:IK//AB
cho hình thang ABCD(AB//CD).đường trung bình MN của hình thang (M\(\in\)AD,N\(\in\)BC) cắt đường chéo AC,BD thứ tự tại E,F
a.c/m ME=FN
b.cho AB=6cm,CD=8cm.tính EF
Cho hình thang ABCD ( AB // CD ). Gọi M, P thứ tự là trung điểm của AB và CD. Qua trung điểm O của MP kẻ đường thẳng song song với hai đáy của hình thang cắt AD, BC lần lượt tại Q, N.
a) Chứng minh OQ = ON
b) Chứng minh tứ giác MNPQ là hình bình hành
c) Gọi I, K thứ tự là giao điểm của QN với BD và AC. Chứng minh IQ = KN.
d) Chứng minh \(\widehat{MIP}=\widehat{MKP}\)
1. Cho hình thang ABCD(AB//CD) có M là giao điểm của AD và BC, N là giao điểm của hai đg chéo. Gọi I và K theo thứ tự là giao điểm của MN với AB và CD. CMR I là trung điểm của AB, K là trung điểm của CD
2.Cho hình bình hành ABCD, 1 đg thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. CMR
a) DM2=MN. MK
b) \(\dfrac{DM}{DN}\) +\(\dfrac{DM}{DK}\)=1
3.cho tam giác ABC lấy ba điểm A' , B', C' thứ tự trên ba cạnh BC, CA, AB của tam giác sao cho ba đg AA' ; BB' ; CC' đồng quy thì \(\dfrac{A'B}{A'C}\).\(\dfrac{B'C}{B'A}\).\(\dfrac{C'A}{C'B}\)=1
4. cho tam giác ABC. 1 dg thẳng d cắt cạnh AB tại D, cắt cạnh AC tại E và cắt đg thẳng BC tại N. Gọi O là giao điểm củ BE và CD. Tia AO cắt BC tại M. CMR 2 điểm M và N CHIA TRONG VÀ CHIA NGOÀI ĐOẠN THẲNG BC theo cùng 1 tỉ lệ
5. cho hình thang ABCD (AB//CD). M là trung điểm của CD. Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC a) CMR IK//AB b) đg thẳng IK cắt AD, BC theo thứ tự tại E, F. CMR EI=IK=KF
hattori heiji
Cho tứ giác ABCD có BC = AD. Gọi P, Q, M, N lần lượt là trung điểm của AB, CD, AC và BD.C/minh: \(MN\perp PQ\)