Cho hình thang ABCD (AB song song với CD, AB<CD). Đường thẳng song song với AB cắt các cạnh AD, BC lần lượt tại M và N và chia hình thang ABCD thành 2 hình có diện tích bằng nhau. CMR: \(MN^2=\dfrac{AB^2+DC^2}{2}\)
Cho hình thang ABCD (đáy nhỏ AB), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với 2 đáy cắt các cạnh AD tại M và BC tại N. Gọi S là giao điểm của AD, BC. I là trung điểm của AB. Chứng minh: Si, DN, CM đồng quy
Cho hình thang ABCD (đáy nhỏ AB), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với 2 đáy cắt các cạnh AD tại M và BC tại N. Gọi S là giao điểm của AD, BC. I là trung điểm của AB. Chứng minh: Si, DN, CM đồng quy
1)Cho hình thang ABCD (AB là đáy bé).Một đường thẳng song song với AB cắt AD,BD,AC,BC lần lượt tại M,N,P,Q.
CMR: MN=PQ
2)Cho hình thang ABCD (AB//CD) . M là trung điểm của CD . MA cắt BD tại I ; MB cắt AC tại K .
CMR:IK//AB
1.Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự tại E và F . Chứng minh rằng OE = OF 2.a) Cho tam giác ABC với đường trung tuyến AM và đường phân giác trong AD. Tính diện tích tam giác ADM, biết AB = m, AC = n (n > m) và diện tích tam giác ABC là S. b) Khi cho n = 7cm, m = 3cm, hỏi rằng diện tích tam giác ADM chiếm bao nhiêu phần trăm diện tích tam giác ABC?
1.Cho tam giác ABC có đường trung tuyến AM. Điểm D thuộc đoạn thẳng BM, Từ D kẻ tia song song với AM và cắt cạnh AB, và tia CA lần lượt tại E và F. Lấy điểm I trên đoạn thẳng FE sao cho AI// BC, điểm G trên cạnh AC sao cho EG//BC. AM cắt EG tại K. Cm:
a) K là trung điểm của EG.
b) A là trung điểm FG và I là trung điểm FE.
2. Cho hình thang ABCD( đáy AB, CD; AB<CD). Gọi O là giao điểm hai đường chéo . Đường thẳng qua O và song song với 2 đáy cắt AD và BC lần lượt tại I và K. Chứng minh
a) \(\frac{1}{AB}\)+\(\frac{1}{CD}\)=\(\frac{1}{OI}\)
b) \(\frac{1}{AB}\)+\(\frac{1}{CD}\)=\(\frac{2}{KI}\)
Cho hình thang ABCD ( AB // CD ). Đường thẳng song song hai đáy cắt cạnhAD tại M, cắt cạnh BC tại N sao choMD = 3MA
a, Tính tỷ số \(\frac{NB}{NC}\)
b, Cho AB = 8cm, CD = 20cm. Tính cạnh MN
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với hai đáy, cắt các cạnh bên AD, BC lần lượt ở M, N sao cho \(\frac{MA}{MD}=\frac{1}{2}\)
a) Tính tỉ số \(\frac{NB}{NC}\)
b) Cho AB = 8cm, CD = 17cm. Tính MN
bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC. 2) tứ giác EFQP là hình gì ? 3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm 4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)
bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN. 2) AM = MN = NC . 3) 2EN = DM + BC .4)\(S_{ABC}=3S_{AMB}\)
bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC. 1) C/m E ,F ,I thẳng hàng . 2) tính \(S_{ABCD}\) . 3) so sánh \(S_{ADC}\) và\(2S_{ABC}\)
bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng
2) tính \(EF\le\frac{AB+CD}{2}\)
3) tứ giác ABCD phải có điều kiện gì thì EF = \(\frac{AB+CD}{2}\)