Bàn Cho hình thang can ABCD (AB//CD) biết AB = 2 em,CD moem và hai đường chéo của hình thang cắt nhau tại L a) Chứng minh : A AIB đồng dạng Delta*CID b)Chứng minh: AACD đồng dạng với triangle BDC © Giar− AD cắt BC tại M.Tính tỷ số diện tích của tam giác MAB và tam giác MDC.
cho hình thang ABCD có độ dài đáy lớn AB bằng 2 lần đáy nhỏ CD gọi I là trung điểm AB. Đường thẳng AD cắt BC tại E .
a) chứng minh AICD và BCDI là hình bình hành
b) chứng minh AD = DE
cho hình thang ABCD, AB//CD. M là trung điểm của CD, I là giao điểm của AM và BD; K là giao điểm của BM và AC. gọi O là giao điểm AC và BD.MO cắt AB tại N; BO cắt BC tại S. CMR: N là trung điểm của AB. A;D;S thẳng hàng
Cho hình thang cân ABCD (AB // CD, AB < CD). Kẻ các đường cao AE, BF của hình thang. Gọi I, K là trung điểm của AB và CD.
a) Chứng minh DE = CF
b) Chứng minh AD, BC, IK đồng quy
c) ID cắt AE tại M, IC cắt BF tại N. Tứ giác DMCN là hình gì? Chứng minh
Cho hình thang ABCD có hai đáy AB và CD (AB < CD) có AD = BC. Gọi E, F lần lượt là trung điểm của AD, BC. Qua E vẽ đường thẳng song song với CD, đường thẳng này cắt AC tại K.
a) Chứng minh K là trung điểm của AC
b) Chứng minh K thuộc đường thẳng EF.
c) Chứng minh rằng tứ giác ABCD là hình thang cân
Cho hình thang ABCD (AB//CD). Gọi M, N lần lượt là trung điểm của AD và BC. Biết AB = 3cm và MN = 7 cm. Độ dài cạnh CD là:
A. 10cm
B. 5cm
C. 20cm
D. 11cm
3) Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.a) Chứng minh: AMNC là hình thang, tính AC, biết MN = 3cm.b) Chứng minh: PQ ∥AC.c) Chứng minh: MN ∥PQ và MN = PQ.d) MQ = NP và MQ ∥NP.
: Cho hình thang ABCD (AB // CD), các tia phân giác của góc A, góc D cắt nhau tại M thuộc cạnh BC. Cho biết AD = 7cm. Chứng minh rằng một trong hai đáy của hình thang có độ dài nhỏ hơn 4cm cứu với