Cho hình thang ABCD (AB // CD, AB < CD). Trên cạnh AD lấy điểm I, trên cạnh BC lấy điểm K sao cho IK // CD. IK cắt đường chéo AC tại E.
Chứng minh AI/AD=AE/AC
Chứng minh AI/AD=BK/BC
Chứng minh AE/AC=BK/BC
Cho hình thang ABCD (AB<CD, AB//CD), kẻ đường thẳng song song với hai đáy và đường thẳng đó cắt các cạnh bên AD và BC tại E và F. Chứng minh các tỉ lệ sau:
a) \(\frac{AE}{ED}=\frac{BF}{FC}\) b)\(\frac{AE}{AD}=\frac{BF}{BC}\) c) \(\frac{DE}{DA}=\frac{CF}{CB}\)
Em cảm ơn ạ!
1, Cho hình thang ANCD (AB // CD), M là trung điểm của CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC.
a, Chứng minh IK // AB.
b, Đường thẳng IK cắt AD, BC lần lượt ở E và F. CHứng minh EI = IK = KF.
2, Cho hình thang ABCD có đáy nhỏ CD. Từ D, vẽ đường thẳng song song với cạnh BC, cắt AC tại M và AB tại K. Từ C, vẽ đường thẳng song song với cạnh bên AD, cắt cạnh đáy AB tại F. Qua F, vẽ đường thẳng song song với đường chéo AC, cắt cạnh bên BC tại P. Chứng minh rằng:
a, MP song song với AB.
b, Ba đường thẳng MP, CF, DB đồng qui.
VẼ HÌNH LUÔN Ạ
Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:
a)\(\frac{BD}{BC}=\frac{1}{3}\)
b)\(BD=DE=EC\)
Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.
Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)
Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.
Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)
Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:
a)EF//HK
b)EF//BC
Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:
a)\(DA.EG=DB.DE\)
b)\(HC^2=HE.HA\)
c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)
1, Cho hình thang ABCD (AB // CD), M là trung điểm của CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC.
a, Chứng minh IK // AB.
b, Đường thẳng IK cắt AD, BC lần lượt ở E và F. CHứng minh EI = IK = KF.
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với AB cắt AD và BC ở E và F. Chứng minh: \(\frac{DE}{AD}+\frac{BF}{BC}=1\)
Cho hình thang ABCD (AB // CD). Vẽ đường thẳng song song với cạnh AB, cắt cạnh AD ở M, cắt cạnh BC ở N. Biết rằng \(\frac{DM}{MA}=\frac{CN}{NB}=\frac{m}{n}\). Chứng minh rằng: \(MN=\frac{mAB+nCD}{m+n}\) ???
Bài 4: Cho hình thang ABCD (AB // CD) và AB < CD. Đường thẳng song song với đáy AB cắt các cạnh bên và đường chéo AD , BD, AC và BC theo thứ tự tại các điểm M, N, P, Q. Chứng minh rằng MN = PQ.
giúp mik với mn mik cảm mơn rất nhiều:))
bài 1:
cho tam giác ABC có AB<AC. Điểm D thuộc cạnh Bc sao cho \(\frac{BD}{CD}=\frac{2}{3}\). Điểm E thuộc đoạn thẳng AD sao cho AE=2DE. Gọi I là giao ddireemr của BE và AC. Từ D kẻ đường thẳng DN song song với BI cắt AC tại N
a, tính \(\frac{CN}{NI}\)
b, tính \(\frac{AI}{IC}\)