Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hình tam giác MPQ vuông tại M ( MQ < MP). Kẻ đường cao MK. a) Chứng minh: AMPO ~ AKPM và MP² = KP.PO b) Kẻ KH vuông MP tại H. Chứng minh: PH.PO = PM.PK c)Chứng minh: PK.KO=HM.PM .
Cho tam giác MNP vuông tại M có MN=5cm, MP=12cm và đường cao MH.
a. Chứng minh: tam giác MNP đồng dạng tam giác HNM. Từ đó suy ra MN^2=NH.NP
b. Tính NP,NH.
c. Cho NQ là phân giác của góc MNP (Q thuộc MP). Chứng minh: QM/QP và QM,QP.
d. Gọi E là giao điểm MH và NQ. Tính tỉ số S^MNQ/S^HNE
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH (H ∈ BC).
a) Chứng minh : AABC dồng dạng với AHBA.
b) Lấy điểm M thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CM tại K. Chứng minh : CM.CK = CH.CB.
c) Tia BK cắt HA tại D. Chứng minh: BKH = BCD.
giúp mình câu c với ạ!
Cho tam giác MNP vuông tại M có đường cao MH . Từ H kẻ HD vuông góc MP tại D
a, CM : tam giác MHP đồng dạng với tam giác NMP
b, CM:MN. MP = NP . MH
c, CM:HD ²=MD.PD
d,CM:MP ²=PH . PN
giúp mik với , mik dg cần gấp :)))
(Vẽ hình và giải ạ) Cho tam giác ABC vuông tại A. Kẻ đường cao AH.
a) Chứng minh ΔABC đồng dạng ΔAHC
b) Chứng minh ΔABC đồng dạng ΔHBC
c) Chứng minh AH ² = HB . HC
d) Chứng minh AB ² = AH . BC
Cho ∆ABC vuông tại A đường cao AH . Kẻ HE vuông góc với AC , Gọi K là giao điểm của AH và EB a)EH //AB b)Chứng minh ∆CAH đồng dạng ∆CBA c) Qua K kẻ đường thẳng // AB cắt AC tại M và cắt BC tại N . Chứng minh KM =KN d) Chứng minh CK đi qua trung điểm của AB
Cho Tam Giác MNP vuông Tại M, đường cao MQ. Cho NQ = 2, NP = 8. Tính MN, MP
Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh tam giác ABC đồng dạng với tam giác HAC
b) Chứng minh EC . AC = DC. BC
c) Chứng minh tam giác BEC = tam giác ADC và tam giác ABE vuông cân