Trong không gian với hệ tọa độ Oxyz cho hình hộp chữ nhật ABCD.A'B'C'D' có A trùng với gốc của hệ tọa độ.
B(a;0;0); D(0;a;0); A'(0;0;b); (a>0;b>0)
Gọi M là trung điểm của CC'
a. Tìm thể tích khối tứ diện BDA'M theo a, b
b. Xác định tỉ số \(\frac{a}{b}\) để 2 mặt phẳng (A'BD) và (MBD) vuông góc với nhau.
Oxyz cho hình hộp ABCd.a'b'c'd' a(1.1.1) b(2.-1.3)d(5.2.0)a'(-1.3.1).sac ding C. b ' và ABCd là hình chữ nhật
trong mặt phẳng với hệ trục tọa đọ oxy, cho tam giác ABC có phương trình đường cao kẽ từ A, đường phân giác trong kẽ từ C, trung tuyến kẽ từ B lần lượ là d1: 3x - 4y + 27= 0; d2: x +2y-5=0; d3:4x+5y-3=0. Tìm tọa dộ tâm và tính bán kính của của đường tròn ngoại tiếp tam giác ABC
+ Trong không gian với hệ tọa độ Oxyz, cho m, n là hai số thực dương thỏa mãn m + 2n = 1. Gọi A, B, C lần lượt là giao điểm của mặt phẳng (P): mx + ny + mnz – mn = 0 với các trục tọa độ Ox, Oy, Oz. Khi mặt cầu ngoại tiếp tứ diện OABC có bán kính nhỏ nhất thì 2m + n có
Cho hình tứ diện ABCD
a) Chứng minh hệ thức : \(\overrightarrow{AB}.\overrightarrow{CD}+\overrightarrow{AC}.\overrightarrow{DB}+\overrightarrow{AD}.\overrightarrow{BC}=0\)
b) Từ hệ thức hãy suy ra định lí :
"Nếu một hình tứ diện có hai cặp cạnh đối diện vuông góc với nhau thì cặp cạnh đối diện tứ ba cũng vuông góc với nhau"
Trong không gian Oxyz hãy viết phương trình mặt cầu đi qua bốn điểm \(A\left(1;0;0\right);B\left(0;-2;0\right);C\left(0;0;4\right)\) và gốc tọa độ. Hãy xác định tâm và bán kính của mặt cầu đó ?
Cho hình tứ diện ABCD. Gọi M. N, P, Q lần lượt là trung điểm của các cạnh AC, BD, AD, BC. Chứng minh rằng :
a) \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}=2\overrightarrow{MN}\)
b) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}-\overrightarrow{BD}=2\overrightarrow{PQ}\)
1.Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diên tích bằng 18.Gọi E là trung điểm của BC.Đường tròn ngoại tiếp tam giác CDE cắt đường chéo AC tại G (G không trùng C).Biết E(1;-1), G(2/5;4/5) và điểm D thuộc đường thẳng d:x+y-6=0. Tìm tọa độ các điểm A,B,C,D.
2.Cho hình chóp s.abc có đáy ABC là tam giác đều cạnh a, tam giác SAB vuông cân tại đỉnh S và nằm trong mặt phẳng vuông góc với mặt đáy.Tính thể tích khối chóp S.ABC và khoảng cách giữa 2 đường thẳng SB và AC theo a.
3.Giải hệ phương trình
\(\begin{cases}\sqrt{3-x}+\sqrt{y+1}=x^{3^{ }}\\x^{3^{ }}-y^{3^{ }}+12x-3y=3y^{2^{ }}-6x^{2^{^{ }}}-7\end{cases}\)
Cho hình tứ diện ABCD. Chứng minh rằng :
a) \(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{BC}\)
b) \(\overrightarrow{AB}=\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{CD}+\overrightarrow{DB}\)