Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a, Chứng minh tứ giác AECF là hình bình hành.
b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.
c, Chứng minh tứ giác CIDB là hình thang cân.
Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a, Chứng minh tứ giác AECF là hình bình hành.
b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.
c, Chứng minh tứ giác CIDB là hình thang cân.
Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự tại Mvà N. Chứng minh rằng:
a) Tứ giác AKCI là hình bình hành.
b) DM = MN = NB.
c) Các đoạn thẳng AC, BD, IK cùng đi qua một điểm.
Câu 3: Cho tam giác ABC vuông tại A, trung tuyến AD. Vẽ từ D các đường thẳng song song với AB và AC, chúng cắt cạnh AC, AB lần lượt tại F và F.
a, Tứ giác AEDF là hình gì? Vì sao?
b, Chứng minh: A đối xứng với C qua F.
c,Cho AB = 6cm, AC = 8cm, tính độ dài đường chéo EF của tứ giác AEDF.
Cho hình bình hành ABCD, gọi O là giao điểm của 2 đường chéo và M,N lần lượt là trung điểm cuả AD,BC. BM và DN cắt AC lần lượt tại E và F.
a, Tứ giác BMDN là hình gì? Vì sao?
b, Chứng minh AE = EF = FC
c, Tính diện tích tam giác DBM, biết diện tích hình bình hành là 30 cm2
Giúp em với ạ
cho hình thoi ABCD (BD<AC). gọi o là giao điểm của AC và BD. I là điểm bất kỳ trên AO. đường thẳng qua I song song với AB cắt AD và BC lần lượt tại M và P. đường thẳng qua I song song với AD cắt AB và CD lần lượt tại N và Q.
a) chứng minh tứ giác AMIN và CPIQ là hình thoi
b) tính diện tích tam giác ABC nếu biết AB=5cm và BD=6cm
c)tứ giác MNPQ là hình gì? tìm vị trí của I đề MNPQ là hình chữ nhật
mong mọi người giúp em ạaa><
Bài 2. Cho hình bình hành ABCD có AD = 2AB, Â = 60 độ. Gọi E và F lần lượt là trung điểm của BC và AD
a) CM: AE vuông góc BF
b) CM tứ giác BFDC là hình thang cân
c) Lấy điểm M đối xứng của A qua B. CM tứ giác BMCD là hình chữ nhật
d) CM M, E, D thẳng hàng
Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. P là điểm đối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao?
Bài 2: Cho hình bình hành ABCD (AB > AD). Kẻ AH, CK lần lượt vuông góc với BD tại E, F.
a) C/m AMCN là hình bình hành
b) AH kéo dài cắt CD tại N, CK kéo dài cắt AB tại M. Chứng tỏ rằng AC, BD, MN đồng quy.
c) Chứng minh M và N đối xứng qua tâm O của hình bình hành ABCD
Bài 3: Cho hình bình hành ABCD. AC cắt BD tại O.
Gọi M,N thứ tự là trung điểm của OB và OD. K là giao điểm của CN với AD. H là giao điểm của AM với BC. I là giao điểm của AN và DC. E là giao điểm của CM và AB. Chứng minh
a) AM = CN b) DI = IC
c) K và H đối xứng qua O d) E và I đối xứng qua O
Cho hình chữ nhật ABCD. Lấy điểm P bất kì trên đường chéo BD. Gọi M là điểm đối xứng với C qua P.
a/ Chứng minh AM // BD.
b/ Gọi E, F lần lượt là hình chiếu của M trên AD, AB. Chứng minh AEMF là hình chữ nhật.
c/ Chứng minh EF // AC
d/ Chứng minh F, E, P thẳng hàng.