Cho hình chữ nhật ABCD . Trên cạnh AB lấy điểm M , trên tia BC lấy điểm N sao cho góc MDN = 90 độ . Vẽ hình chữ nhật MDNP, chứng minh 5 điểm M , D , N , P , B cùng nằm trên 1 đường tròn
trên các cạnh của hình vuông ABCD, lấy các điểm theo thứ tự M,N,P,Q sao cho AM= BN= CP= DQ
a)c/m bốn điểm M,N,P,Q nằm trên đường tròn
b) Cho AB= a, góc ABQ = 30 độ. Tính AQ và BQ
Cho hình vuông ABCD. Trên AB, AD lần lượt lấy các điểm M và N sao cho AM = DN. Vẽ
đường tròn (M,MB) và đường tròn (N,ND).
1. Chứng minh rằng hai đường tròn (M) và (N) luôn cắt nhau.
2. Gọi giao điểm của hai đường tròn là E và F, trong đó E và C nằm trên cùng nửa mặt phẳng
bờ MN. NE kéo dài cắt BC tại H. Chứng minh rằng NH vuông góc với BC.
3. Chứng minh rằng E, F, C thẳng hàng.
cho đoạn thẳng ab trên cùng một nửa mặt phẳng ab vẽ hai tia ã, by cùng vuông góc với ab gọi o là trung điểm ab trên tia ã by lần lượt lấy hai điểm C và D bất kỳ sao cho COD = 90 chứng minh Cd là tiếp tuyến của hai đường tròn đường kính AB tìm vị trí của C D để diện tích tứ giác ABDC nhỏ nhất và tính diện tích ấy theo AB = a
cho đoạn thẳng ab trên cùng 1 nửa mặt phẳng có bờ là đường thẳng ab vẽ hai tia ax và by lần lượt vuông góc với ab tại a và b gọi trung điểm của ab là o trên ax lấy điểm c trên by lấy điểm d sao cho góc COD bằng 90 độ
Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho AC > AB, CB cắt đường tròn tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tai F. 5) Chứng minh rằng tứ giác AEFD nội tiếp đường tròn. 6) Gọi M là một điểm trên cung lớn BD của đường tròn (O) (M khác B và D). Chứng minh rằng . BMD OFD 7) Giả sử đường tròn nội tiếp tam giác AED có độ dài đường kính bằng đoạn OA. Tính giá trị của ACAB. 8) Gọi P là điểm di động trên đoạn AC, đường thẳng BP cắt đường tròn (O) tại N. Chứng minh rằng tâm của đường tròn ngoại tiếp tam giác CPN luôn nằm trên một đường thẳng cố định khi P thay đổi trên đoạn thẳng AC.
). Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho ; AC AB CB cắt (O) tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tại F. 1) Chứng minh bốn điểm A, D, E, F cùng nằm trên một đường tròn. 2) Gọi M là một điểm bất kì trên cung lớn BD của (O) (M khác B và D). Chứng minh: . BMD OFD 3) Giả sử đường tròn nội tiếp tam giác AED có độ dài đường kính bằng độ dài đoạn OA. Tính giá trị của ACAB. 4) Gọi P là điểm thay đổi trên đoạn thẳng AC, đường thẳng BP cắt (O) tại N. Hỏi khi P di chuyển trên AC thì tâm đường tròn ngoại tiếp tam giác CPN chạy trên đường nào?
Từ điểm A nằm ngoài đường tròn (O;R) vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên bán kính OC lấy điểm M. Tia AM cắt (O) tại D và E (D nằm giữa A và E). Đoạn thẳng OA cắt BC tại H.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn
b) Chứng minh AC2=AD.AE.
c) Chứng minh góc AHD = góc AEO
d) Vẽ đường thẳng qua O vuông góc với DE và vẽ tiếp tuyến của đường tròn (O) tại E. Hai đường thẳng này cắt nhau tại I. Chứng minh B, C, I thẳng hàng.