a: BD=15cm
\(AH=\dfrac{12\cdot9}{15}=7.2\left(cm\right)\)
\(HB=\dfrac{12^2}{15}=9.6\left(cm\right)\)
b: \(AE=\dfrac{AD^2}{AH}=\dfrac{81}{7.2}=11.25\left(cm\right)\)
\(DE=\sqrt{11.25^2-9^2}=6.75\left(cm\right)\)
a: BD=15cm
\(AH=\dfrac{12\cdot9}{15}=7.2\left(cm\right)\)
\(HB=\dfrac{12^2}{15}=9.6\left(cm\right)\)
b: \(AE=\dfrac{AD^2}{AH}=\dfrac{81}{7.2}=11.25\left(cm\right)\)
\(DE=\sqrt{11.25^2-9^2}=6.75\left(cm\right)\)
Cho tam giác ABC (AB<AC) có góc A bằng 90* và M là trung tuyến của B. Gọi H là hình chiếu của A trên BC. Cho biết AM=13cm; AH=12cm
a) tính MH; AB; AC
b) Đường thẳng qua B và vuông góc với AM cắt AC tại F. Tính AF;BF
Cho hình chữ nhật ABCD (AB lớn hơn AC) . Kẻ AH vuông góc BD tại H . AH cắt DC tại K và cắt đường thẳng BC tại M A) Chứng minh DH.DB=AH.AK và BC.BD=AH.AM B) Chứng minh AD bình = DK.DC C) Chứng minh AH bình= HK.HM
cho tam giác ABC vuông tại A, đường cao AH . Cho biết BH =4, CH=9cm. Gọi D,E lần lượt là hình chiếu vuông góc của H trên cạnh AB, AC. Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M,N. Tính diện tích tứ giác DENM
MÌNH ĐANG CẦN GẤP MN GIÚP MIK VS Ạ ! MIK CẢM ƠN !
cho tam giác ABC vuông tại A có đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB,AC. cho BH= 3cm, CH= 12cm
a, tính độ dài các cạnh AB,AC
b, chứng minh HF= 2HE
c, từ C kẻ đường thẳng vuông góc với BC, đường thẳng này cắt đường thẳng AB tại I, kẻ AK vuông góc với CI tại K. chứng minh
CI^3/CB^3= IK/BH
(2,5 điểm) Cho triangle ABC vuông tại A, đường cao AH, đường trung tuyến. AM 1 ) Biết BC = 10 cm, BH = 3.6cm Tỉnh độ dài đoạn thẳng AB, AH và số đo góc HAM ( làm ròn số đo góc đến phút) b) từ B kẻ BE vuông góc AM (E thuộc AM ) BE cắt cắt AH tại D. Chứng minh rằng DM II AC HD = DM * sin C Lấy điểm K trên cạnh BE sao cho hat AKM = 90 deg Chứng minh AE. ME = BE .DE VÀ S² AMK =S² AMB. S AMD
Cho tam giác Abc vuông tại A có đường cao AH chia cạnh huyền BC thành hai đoạn BH=9cm HC=16cm a. Tính độ dài đoạn AH AB AC b. Gọi M là trung điểm của Ai tính số đo góc AMB (làm tròn đến độ)
giúp mk bài này vs
Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng qua D, vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại L. Chứng minh rằng:
a) Tam giác DIL là một tam giác cân
b) Tổng
không đổi khi I thay đổi trên cạnh AB.
Bài 2: Cho tam giác ABC nhọn có đường cao AH. Gọi E là hình chiếu của H trên AB.
a, Biết AE = 3,6 cm ; BE = 6,4 cm. Tính AH, EH và góc B ( Số đo góc làm tròn đến độ)
b, Kẻ HF vuông góc với AC tại F. Chứng minh AB . AE = AC . AF
c , Đường thẳng qua A và vuông góc với EF cắt BC tại D; EF cắt AH tại O.
C1, Chứng minh tam giác AEF đồng dạng với tam giác ACB
C2, Chứng minh:
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm BC. Biết AM = 10cm và AH = 8cm. a) Tính MH; AB; AC. b) Vẽ đường thẳng qua B và vuông góc với AM, cắt AC tại K. Tính BK, AK.