b)xét 2\(\Delta\) vuông ahb và bcd
\(^{\widehat{ABD}=\widehat{BDC}}\)(SLT,AD//BC)
\(\Rightarrow\Delta AHB\sim\Delta BCD\)
d)xét2\(\Delta vuông\)ADH và BDA có
\(\widehat{BDA}:chung\)
\(\Rightarrow\Delta ADH\sim\Delta BDA\)
\(\Rightarrow\dfrac{AD}{BD}=\dfrac{DH}{DA}\)
\(\Rightarrow AD^2=DB.DH\)
d)Xét 2\(\Delta vuôngAHDvàBHAcó\)
\(\widehat{BAH}=\widehat{ADB}\)(cùng phụ \(\widehat{ABD}\))
\(\Rightarrow\Delta AHD\sim\Delta BHA\)
\(\Rightarrow\dfrac{AH}{HD}=\dfrac{HB}{HA}\)
\(\Rightarrow AH^2=HB.HD\)
