Cho hình thang vuông ABCD tại A và B có các đáy AD=a, BC=3a, cạnh AB=2a.
a) Tính \(\overrightarrow{AB}.\overrightarrow{BD}\); \(\overrightarrow{BC}.\overrightarrow{BD}\) và \(\overrightarrow{AC}.\overrightarrow{BD}\)
b) Gọi I, J lần lượt trung điểm AB, CD. Tính \(\overrightarrow{AC}.\overrightarrow{IJ}\)
Cho hình chữ nhật ABCD. Gọi O là giao điểm của AC và BD. Mệnh đề nào dưới đây là đúng:
A. \(\overrightarrow{AC}-\overrightarrow{AD}=\overrightarrow{AB}\)
B. \(\overrightarrow{AC}=\overrightarrow{BD}\)
C. \(\left|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right|=\overrightarrow{O}\)
D. \(\overrightarrow{OA}=\overrightarrow{OB}=\overrightarrow{OC}=\overrightarrow{OD}\)
Cho 1 hình chữ nhật ABCD c/m:
\(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=2\overrightarrow{AC}\)
1. Cho hình chữ nhật ABCD , AB = 3 , AD = 4 . Tính
a. \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|\)
b. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\)
c. \(\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{CA}\right|\)
Cho hình chữ nhật ABCD tâm O
AB = 3 , AD = 4
a / Chứng minh:
\(\overrightarrow{DO}+\overrightarrow{AO}=\overrightarrow{DC }\)
\(\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{AB}\)
\(\overrightarrow{BA}+\overrightarrow{DB}=\overrightarrow{CB}\)
cho hình chữ nhật ABCD có AB=5cm, BC=10cm. Tính |\(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\)|
cho hình thang vuông abcd đường cao ab = a, đáy lớn bc = 2a, đáy nhỏ ad = a
tính tích vô hướng \(\overrightarrow{AC}.\overrightarrow{BD}\) từ đó suy ra giá trị của cos (\(\overrightarrow{AC}.\overrightarrow{BD}\))
1. Cho hình vuông ABCD có cạnh bằng a. Độ dài \(\left|\overrightarrow{AD}+\overrightarrow{AB}\right|\) bằng:
A. 2a
B.a\(\sqrt{2}\)
C.\(\frac{a\sqrt{3}}{2}\)
D. \(\frac{a\sqrt{2}}{2}\)
2. Cho hình thang ABCD có AB song song với CD. Cho AB=2a, CD= a , O là trung điểm của AD. Khi đó
A.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\frac{3a}{2}\)
B. \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\)
C.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=2a\)
D.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=3a\)
3. Cho tam giác đều ABC cạnh a. Khi đó:
A. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\)
B.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\)
C. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\frac{a\sqrt{3}}{2}\)
D.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\)
Cho 1 hình chữ nhật ABCD c/m:
\(\overrightarrow{AB}\)+\(\overrightarrow{AC}\)+\(\overrightarrow{AD}\)= 2\(\overrightarrow{AC}\)