Chương 3: VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thùy Chi

Cho hình chóp SABCD đáy là hình thang vuông tại A và B, AB = BC = a, AD = 2a, SA ⊥ (ABCD). Tìm thiết diện của hình chóp bởi mp(P) chứa AB và ⊥ (SCD)

Nguyễn Lê Phước Thịnh
13 tháng 4 2023 lúc 12:07

Vì SA vuông góc (ABCD)

=>SA vuông góc CD

Gọi I là trung điểm của AD

=>AI=BC=a

mà AI//BC

nên AB=CI=a

=>AB=CI=ID

=>ΔACD vuông tại C

=>CD vuông góc AC

=>CD vuông góc (SAC)

=>(SCD) vuông góc (SAC)

Vẽ AE vuông góc SC tạiE

=>AE vuông góc (SCD)

mà \(A\in\left(P\right)\perp\left(SCD\right)\)

nên \(AE\in\left(P\right)\)

=>\(E=SC\cap\left(P\right)\)

\(E\in\left(P\right)\cap\left(SCI\right)\)

\(\left(P\right)\supset AB\)//CI thuộc (SCI)

=>(P) cắt (SCI)=Ex//AB//CI

Gọi F=Ex giao SI

=>(P) cắt (SAD) tại AJ

Gọi F=AJ giao SD

=>F=(P)giao (SD)

=>Tứ giác cần tìm là ABEF


Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Phương Lee
Xem chi tiết
Đặng Thu Trang
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Phương Lee
Xem chi tiết
Pham Thi Hai
Xem chi tiết
Diệp Thị Bích Nghi
Xem chi tiết
SusAnna Sarah
Xem chi tiết
Thúy Nga
Xem chi tiết