\(V=\frac{1}{3}SA.S_{ABCD}\)
Ta có: \(S_{AMQ}+S_{CNP}=\frac{1}{2}d\left(A;MQ\right).MQ+\frac{1}{2}d\left(C;NP\right).NP\)
\(=\frac{1}{2}.\frac{1}{2}d\left(A;BD\right).\frac{1}{2}BD+\frac{1}{2}.\frac{1}{2}d\left(C;BD\right).\frac{1}{2}BD\)
\(=\frac{1}{4}S_{ABD}+\frac{1}{4}S_{CBD}=\frac{1}{4}S_{ABCD}\)
Tương tự: \(S_{BMN}+S_{DPQ}=\frac{1}{4}S_{ABCD}\)
\(\Rightarrow S_{NMPQ}=S_{ABCD}-\left(\frac{1}{4}S_{ABCD}+\frac{1}{4}S_{ABCD}\right)=\frac{1}{2}S_{ABCD}\)
\(\Rightarrow V_{S.MNPQ}=\frac{1}{3}SA.S_{MNPQ}=\frac{1}{2}\left(\frac{1}{3}SA.S_{ABCD}\right)=\frac{V}{2}\)