\(\left\{{}\begin{matrix}AB//CD\\CD\in\left(SCD\right)\end{matrix}\right.\) \(\Rightarrow AB//\left(SCD\right)\)
3 câu sau chứng minh y hệt
\(\left\{{}\begin{matrix}AB//CD\\CD\in\left(SCD\right)\end{matrix}\right.\) \(\Rightarrow AB//\left(SCD\right)\)
3 câu sau chứng minh y hệt
Cho hình chóp S.ABCD, ABCD là hình bình hành
a) Tìm giao tuyến (SAC) và (SBD)
b) Gọi M là điểm nằm miền trong ΔSBC. Tìm giao tuyến (SAM) và (SBD)
c) Tìm giao tuyến (SAD) và (SBC); (SAB) và SCD)
CHO HÌNH CHÓP SABCD CÓ ĐÁY ABCD LÀ HÌNH BÌNH HÀNH . GỌI M N E LẦN LƯỢT LÀ TRUNG ĐIỂM SA ; SD ; BC .
A/ TÌM GIAO TUYẾN (MBC) VÀ (SAD).
B/ TÌM GIAO ĐIỂM BM VÀ (SAC).
C/ CHỨNG MINH MN// (SBC).
D/NE // (SAB)
1.Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi A',B' lần lượt là trung điểm của SA,SB . Đường thẳng A' B' song song với mặt phẳng nào dưới đây?
A. (SAB).
B. ( ABCD) .
C. (SAD).
D. (SBC).
2.Cho hình hộp ABCD.A' B' C' D' . Mặt phẳng ( ABA') song song với:
A. ( AA'C') .
B. (CC'D').
C. ( ADD').
D. (BB'A').
Cho hình chóp A.ABCD có SA vuông góc (ABCD) , \(SA=a\sqrt{3}\). ABCD là hình vuông cạnh a
Tính góc giữa
a) (SBC) và (SCD)
b) (SAB) và (SBC)
c) (SAD) và (SCD)
Cho hình chóp S.ABCD có đáy ABCD là hình thang, AD là đáy lớn. Gọi M,N là trung điểm lần lượt của BC và CD.Tìm giao tuyến của 2 mặt phẳng:
a,(SAC) và (SBD)
b,(SMN) và (SAD)
c,(SAB) và (SCD)
d,(SMN) và (SAC)
e,(SMN) và (SAB)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là trọng tâm của tam giác SAB; I và M lần lượt là trung điểm của AB và SD.
a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD)
b) Gọi N là giao điểm DI và AC. Chứng minh rằng NG song song với (SCD)
c)Tìm giao điểm E của SO và (CGM). Tính tỉ số \(\frac{SE}{SO}\)
Cho hình chóp SABCD có đáy ABCD là hình bình hành.
a) Xác định giao tuyến của (SAB) và (SCD); (SAD) và (SBC).
b) Gọi M\(\in SC\), tìm giao tuyến của (ABM) và (SCD).
c) Gọi N\(\in SB\), tìm giao tuyến của (SAB) và (NCD).