Với thông tin đã cho, ta có Sđ = a^2 và h = SA = 2a. Thay vào công thức, ta có:
Sph = (1/3) * a^2 * 2a = (2/3) * a^3.
Vậy diện tích của hình chóp cắt bởi mặt phẳng (P) là (2/3) * a^3.
Với thông tin đã cho, ta có Sđ = a^2 và h = SA = 2a. Thay vào công thức, ta có:
Sph = (1/3) * a^2 * 2a = (2/3) * a^3.
Vậy diện tích của hình chóp cắt bởi mặt phẳng (P) là (2/3) * a^3.
Cho hình chóp S>ABCD có đáy ABCD là hình vuông cạnh a, mặt phẳng (SAB) vuông góc với mặt phẳng đáy, SA=SB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 45 độ. Tính thể tích khối chóp S.SBCD theo a.
Giúp mình với:
Hình chóp tứ giác SABCD có đáy hình vuông cạnh a. SA vuông với đáy, góc giữa mặt phẳng (SBD) và đáy =60 độ.
Gọi M,N lần lượt là trung điểm SB,SC,
Tính thể tích SADNM?
Cho hình chóp tam giác đều S.ABC với SA=2a, AB = a. Gọi H là hình chiếu vuông góc của A trên cạnh SC. Chứng minh SC vuông góc với mặt phẳng(ABH). Tính thể tích của khối chóp S.ABH theo a
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, \(SA=a,SB=a\sqrt{3}\) và mặt phẳng (SAB) vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC
Tính theo a thể tích của khối chóp S.BMDN và tính cosin của góc giữa 2 đường thẳng SM và DN
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB=a, SA vuông góc với mặt phẳng (ABC), góc giữa 2 mặt phẳng (SBC) và (ABC) bằng 30 độ. Gọi M là trung điểm của cạnh SC. Tính thể tích khối chóp S.ABM theo a.
cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 2a, góc BAD=120. Mặt bên (SAB) có SA=a, SB= a\(\sqrt{3}\) và vuông góc với mặt phẳng đáy. Gọi G là trọng tâm tam giác SCD. Tính thể tích hình chóp SABCD và khoảng cách từ G đến mặt phẳng (SAB).
Giúp mình với
Cho hình chóp S.ABCD có đáy \ABCD là hình vuông cạnh a, cạnh SA vuông góc với đáy và SA = a. Gọi M, N lần lượt là trung điểm của các cạnh AD và SC.
1. Tính thể tích khối tứ diện MNBD.
2. Tính khoảng cách từ điểm D đến mặt phẳng (MNB).
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là H thuộc cạnh AB sao cho HA=2HB. Góc giữa 2 đường thẳng SC và mặt phẳng (ABC) bằng 60 độ. Tính thể tích khối chóp A.ABC và tính khoảng cách giữa 2 đường thẳng SA và BC theo a
cho hình chóp sabcd có đáy là tam giác vuông cân tại a,ab=a√2,sa=sb=sc,góc giữa sa và mặt phẳng(abc )=60 độ.tính thể tích sabc và khoảng cách từ a đến mặt phẳng (sbc)