Chương 1: KHỐI ĐA DIỆN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Khánh Vân

Cho hình chóp S>ABCD có đáy ABCD là hình vuông cạnh a, mặt phẳng (SAB) vuông góc với mặt phẳng đáy, SA=SB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 45 độ. Tính thể tích khối chóp S.SBCD theo a.

Lương Đức Trọng
1 tháng 4 2016 lúc 16:14

G�c ?: G�c gi?a E, C, H G�c ?: G�c gi?a E, C, H ?o?n th?ng a: ?o?n th?ng [A, D] ?o?n th?ng b: ?o?n th?ng [A, B] ?o?n th?ng e: ?o?n th?ng [B, C] ?o?n th?ng f: ?o?n th?ng [C, D] ?o?n th?ng h: ?o?n th?ng [E, H] ?o?n th?ng i: ?o?n th?ng [E, A] ?o?n th?ng j: ?o?n th?ng [E, B] ?o?n th?ng k: ?o?n th?ng [E, D] ?o?n th?ng l: ?o?n th?ng [E, C] ?o?n th?ng m: ?o?n th?ng [H, C] A = (-1.48, 1.8) A = (-1.48, 1.8) A = (-1.48, 1.8) D = (2.3, 1.8) D = (2.3, 1.8) D = (2.3, 1.8) B = (-3.12, -0.08) B = (-3.12, -0.08) B = (-3.12, -0.08) ?i?m C: Giao ?i?m c?a c, d ?i?m C: Giao ?i?m c?a c, d ?i?m C: Giao ?i?m c?a c, d ?i?m H: (A + B) / 2 ?i?m H: (A + B) / 2 ?i?m H: (A + B) / 2 ?i?m E: ?i?m tr�n g ?i?m E: ?i?m tr�n g ?i?m E: ?i?m tr�n g

Kẻ SH vuông góc với AB. Do (SAB) vuông góc với đáy nên hình chiều của S trên (ABCD) chính là H.

Mặt khác tam giác SAB cân tại S nên H là trung điểm của AB.

\(CH=\sqrt{BH^2+BC^2}=\sqrt{\dfrac{a^2}{4}+a^2}=\dfrac{a\sqrt{5}}{2}\)

Góc giữa SC và đáy là góc SCH nên \(\widehat{SCH}=45^0\)

\(SH=CH.\tan 45^0=\dfrac{a\sqrt{5}}{2}\)

\(S_{ABCD}=a^2\)

Vậy \(V_{SABCD}=\dfrac{1}{3}.SH.S_{ABCD}=\dfrac{a^3\sqrt{5}}{6}\)


Các câu hỏi tương tự
Nguyễn Thành Trung
Xem chi tiết
Phạm Thị Thúy Giang
Xem chi tiết
Lại Thị Hồng Liên
Xem chi tiết
Đặng Thị Phương Anh
Xem chi tiết
Hoàng Thị Tâm
Xem chi tiết
Phạm Thu Hà
Xem chi tiết
Phạm Minh Khánh
Xem chi tiết
Nguyễn Hồng Phương Khôi
Xem chi tiết
Phan Thị Cẩm Tiên
Xem chi tiết