Cho hình chóp S.ABCD có đáy là hình vuông tâm O, AB = SA = a, SA vuông góc với (ABCD). Gọi (P) là mặt phẳng qua A và vuông góc với SC, (P) cắt SB, SC, SD lần lượt tại H, I, K.
a, Chứng minh HK // BD.
b, Chứng minh AH vuông góc với SB, AK vuông góc với SD.
c, CM tứ giác AHIK có 2 đường chéo vuông góc. Tính diện tích AHIK theo a.
Mình không xác định được mp (P) nên giúp mình vẽ cả hình nữa nhé! Cảm ơn nhiều.
Cho hình chóp SABCD, có đáy là hình vuông tâm O. SA ⊥ (ABCD). Gọi H,I,K lần lượt là hình chiếu vuông góc của A trên SB, SC, SD.
a) Cm: BC⊥(SAB), CD⊥(SAD), BD⊥(SAC)
b) Cm: AH⊥(SBC), AK⊥(SCD)
c) Cm: HK⊥(SAC). Từ đó suy ra HK⊥AI
Cho hình chóp S ABCD, có đáy là hình vuông tâm O, SA vuông góc với mặt phẳng (ABCD). Gọi H, I, K lần lượt là hình chiếu vuông góc của điểm A lên SB, SC, SD.
1.CMR : AH, AK cùng vuông góc với SC. Từ đó suy ra 3 đường thẳng AH, AI, AK cùng nằm trong một mặt phẳng.
2. Chứng minh rằng HK⊥(SAC) , HK ⊥ AI.
Cho hình chóp S.ABCD có đáy là hình vuông tâm O, SA vuông góc (ABCD). a) CM : BC vuông góc (SAB) và các mặt bên của hình chóp là các tam giác vuông. b) Gọi H,K là hình chiếu của A trên SB và SO. C/M : AH vuông góc SC va AK vuông góc BD c) C/M : K là trực tâm tam giác SBD
Cho hình chóp S.ABCD có đáy là hình thoi ABCD và SA = SB = SC = SD. Gọi O là giao điểm của AC và BD. Chứng minh rằng :
a) Đường thẳng SO vuông góc với mặt phẳng (ABCD)
b) Đường thẳng AC vuông góc với mặt phẳng (SBD) và đường thẳng BD vuông góc với mặt phẳng (SAC)
Cho hình chóp S.ABCD có SA⊥(ABCD)SA⊥(ABCD)và đáy ABCD là hình vuông. Gọi H,K là hình chiếu của A lên SB,SD
a) Cm AH⊥(SBC)
b) Cm AK⊥(SCD)
c) Qua K vẽ đường thẳng vuông góc với SD tại K cắt CD tại M. Cm SD⊥(BKM)
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, SA vuông góc với đáy. Hạ AH vuông góc với SB, AK vuông góc với SC.
a, CM các mặt bên của hình chóp là các tam giác vuông.
b, CM tam giác SHK vuông.
c, Gọi D là giao điểm của HK và BC. CM: AC vuông góc với AD.
Mình cần phần c thôi nhé!
Cho hình chóp S.ABCD, đáy ABCD là tứ giác có ABD là tam giác đều, BCD là tam giác cân tại C có ∠BCD = 120o. SA vuông góc với mp đáy.
a, Gọi H, K là hình chiếu vuông góc của A trên SB, SD. CM: SC vuông góc với (AHK).
b, Gọi C' là giao điểm của SC với mp (AHK). Tính diện tích tứ giác AHC'K khi AB = SA = a.
Mình chỉ cần giúp phần b thôi nha, rất mong có phần giải thích để tìm ra giao điểm C'.