Kẻ \(AH\perp BC\Rightarrow\widehat{ABH}=\widehat{BAD}=60^0\left(slt\right)\Rightarrow AH=AB.sin60=\frac{a\sqrt{3}}{2}\)
Từ A kẻ \(AK\perp SH\) (1)
Do \(\left\{{}\begin{matrix}BC\perp AH\\BC\perp SA\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAH\right)\Rightarrow BC\perp AH\) (2)
Từ (1) (2) \(\Rightarrow AK\perp\left(SBC\right)\Rightarrow AK=d\left(A;\left(SBC\right)\right)\)
\(\frac{1}{AK^2}=\frac{1}{SA^2}+\frac{1}{AH^2}\Rightarrow AK=\frac{SA.AH}{\sqrt{SA^2+AH^2}}=\frac{a\sqrt{66}}{11}\)