Đề bài thiếu độ dài SD hoặc dữ kiện để tính độ dài SD nên ko thể tính được góc giữa SA và (ABCD)
Đề bài thiếu độ dài SD hoặc dữ kiện để tính độ dài SD nên ko thể tính được góc giữa SA và (ABCD)
Cho hình chóp S.ABCD đáy là hình vuông, SA vuông góc với (ABCD) a) CMR : BC vuông góc với (SAB); CD vuông góc với (SAD) b) CMR : BD vuông góc với (SAC) c) Kẻ AE vuông góc với SB. CMR : SB vuông góc với (ADE)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a . Tam giác SAB đều và \(SC=a\sqrt{2}\) . Gọi H và K lần lượt là trung điểm AB và AD .
a) chứng minh \(SH\perp\left(ABCD\right)\)
b) chứng minh \(AC\perp SK\) và \(CK\perp SD\) .
cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. trên cạnh SA lấy điểm M sao cho SM=1/2 SA. chứng minh rằng SC song song với mp(MBD)
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SA, E là điểm trên đoạn SB sao cho \(SE=\dfrac{2}{3}SB\). Thiết diện của mp đi qua M, song song với DE và SC với S.ABCD là hình gì?
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Mặt phẳng (P) đi qua BC và song song AD cắt SA tại E, cắt SD tại F.
a) Tứ giác BEFC là hình gì?
b) M thuộc AD sao cho AM=1/3AD. G là trọng tâm \(\Delta SAB\), I là trung điểm AB. Đường thẳng qua M và song song AB cắt CI tại N. CMR: NG//(SCD) và MG//(SCD)
Cho hình chóp S.ABCD , tam giác ABC vuông góc tại C , SA vuông góc với (ABC ) a. CMR : BC vuông góc (SAC) b. Gọi E là hình chiếu của A lê SC . CMR : AE vuông góc ( SBC )
Cho hình chóp S.ABCD với ABCD là hình thang đáy lớn AD
a) Xác định giao tuyến của 2 mp (SAB) và (SCD)
b) Gọi M là trung điểm của BC, mp (P) qua M và song song với 2 đường thẳng SA và CD. Xác định thiết diện của mp (P) với hình chóp đã cho
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành.Gọi M là trung điểm của SA và E là trung điểm của SB; P là điểm thuộc cạnh SC sao cho SC=3SP. Tìm giao điểm của DB và mặt phẳng (MPE)
Cho hình chóp S.ABCD có đáy ABCD là hbh tâm O. Gọi M là trung điểm BC. P thuộc SA sao cho AP=2SP
a, Tìm giao điểm của PM và (SBD). Chứng minh SC//(MDP)
b, (Q) đi qua P và song song với AD, SB. Tìm thiết diện của chóp cắt bởi (Q)