Câu 1 :Cho hình chóp S.ABC , gọi M là trung điểm của BC , N là điểm thuộc cạnh AB sao cho BN = 2 NA, G là trọng tâm tam giác SBC.
1. Chứng minh NG // (SAC).
2. Xác định giao điểm I của đường thẳng MN và mặt phẳng (SAC) . Tính tỉ số \(\dfrac{IC}{CA}\).
Câu 2 :CHo hình lăng trụ ABC.A'B'C'. Trên tia đối của tia BA lấy điểm M sao cho BM=\(\dfrac{1}{2}\) BA. Gọi E là trung điểm của BC.
1. Xác định thiết diện của hình lăng trụ khi cắt bởi mặt phẳng (MEA').
2. Gọi K=BB'\(\cap\) (MEA') . Tính tỉ số \(\dfrac{BK}{BB'}\) .
Giúp mình với sắp kiểm tra rồi !!!!
Cho hình chóp S.ABC. Gọi G là trọng tâm ABC. D là trung điểm của SG.
a, Tìm giao điểm của BG và (SAC)
b, Tìm giao điểm của BD và (SAC)
cho hình chóp sabc. gọi h, k là trọng tâm của tam giác sab, tam giác sbc, m là trung điểm ac. i thuộc sm. si > sm. Tìm giao tuyến của (IHM) và (SBC) Jup e vx ạ
Cho hình chóp S ABCD . có đáy ABCD là hình thang với đáy lớn là AB , AB=2CD . Gọi O là giao điểm của AC và BD , G là trọng tâm tam giác SBC .
a. Chứng minh rằng CD // ( SAB )
b. Xác định giao tuyến của hai mặt phẳng ( SAD ) và ( SBD )
Cho hình chóp SABCD có đáy ABCD là hình bình hành. G, H lần lượt là trọng tâm tam giác SBC, tam giác SCD. Tìm giao tuyến (SGH) và (SAD)
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và CD.
a) Chứng minh (OMN) // (SBC).
b) Giả sử hai tam giác SAD và ABC là các tam giác cân tại A. Gọi AE và AF lần lượt là đường phân giác trong của hai tam giác ACD và SAB. Chứng minh EF // (SAD).
Cho hình chóp S.ABC có G là trọng tâm tam giác ABC. Gọi M là trung điểm của SG, gọi giao điểm của mặt phẳng (P) qua M với các cạnh SA, SB, SC tại A', B', C' Tính \(\dfrac{SA}{SA'}+\dfrac{SB}{SB'}+\dfrac{SC}{SC'}\)
Cho hình chóp Sabc. GỌI h,k là trọng tâm của tam giác SAB, SBC, M là trung điểm của AC. I thuộc SM, SI>IM. Tìm (IHM) và (SBC) Giúp em tìm giao tuyến hai mặt phẳng này vs