xét tam giác AOE và tam giác COF có:
EAO= FCO(do ABCD là hình bình hành)
AO=OC
AOE=COF(đối đỉnh)
do đó tam giác AOE=tm giác COF(g.c.g)
suy ra OE=OF(1)
CMTT:OH=OG(2)
TỪ (1),(2)suy ra tứ giác EGFH là hình bình hành
xét tam giác AOE và tam giác COF có:
EAO= FCO(do ABCD là hình bình hành)
AO=OC
AOE=COF(đối đỉnh)
do đó tam giác AOE=tm giác COF(g.c.g)
suy ra OE=OF(1)
CMTT:OH=OG(2)
TỪ (1),(2)suy ra tứ giác EGFH là hình bình hành
cho hình bình hành ABCD , O là giao điểm hai đường chéo AC và BD . gọi M,N lần lượt là trung điểm của OB và OD
a, chứng minh tứ giác AMNC là hình bình hành
b, tia AM cắt BC ở E , tia CN cắt AD ở F . chứng minh ba đường thẳng AC, BD , E đồng qui
Làm nhanh giúp mình nhé mình cần gấp thank các bạn nhiều!!!!!!!!
Cho tam giác ABC nhọn (AB<AC) hai đường cao BE và CF cắt nhau tại H.Vẽ đường thẳng vuông góc với AB tại B, vẽ đường thẳng vuông góc với AC tại C , hai đường thẳng này cắt nhau tại D
a) C/m : AH vuông góc với BC và tứ giác BHCD là hình bình hành
b) Gọi M là trung điểm BC. C/m : 3 điểm H, M, D thẳng hành và tam giác EMF cân
c) Gọi K là điểm đối xứng của H qua BC .C/m BD=CK
d) Dường thẳng vuông góc tại M cắt AD tại L. C/m AH = 2ML
giúp mình bài toán hình này nha, toán 8
1)cho hình vuông ABCD, E là điểm nằm trong hình vuông sao cho góc EDC=góc ECD=15o. F là điểm nàm ngoài hình vuông sao cho góc FBC=góc FCB=60o. Chứng minh:
a)Tam giác AB đều; b) D,E,F thẳng hàng
2) Hai đường chéo của hình bình hành ABCD cắt tại O. M,N,P,Q theo thứ tự là giao điểm các đường phân giác của các tam guacs OAB;OBC;OCD;ODA
a) CM: tứ giác MNPQ là hình thoi
b) Hình bình hành ABCD phải có thêm điều kiện gì để tứ giác MNPQ là hình vuông
3)cho hình chữ nhật ABCD , BH vuông góc với AC. gọi M,K lần lượt là trung điểm của HC và AD. chứng minh BM vuông góc với KM.
giúp mình bài toán hình này nha, toán 8
1)cho hình vuông ABCD, E là điểm nằm trong hình vuông sao cho góc EDC=góc ECD=15o. F là điểm nàm ngoài hình vuông sao cho góc FBC=góc FCB=60o. Chứng minh:
a)Tam giác AB đều; b) D,E,F thẳng hàng
2) Hai đường chéo của hình bình hành ABCD cắt tại O. M,N,P,Q theo thứ tự là giao điểm các đường phân giác của các tam guacs OAB;OBC;OCD;ODA
a) CM: tứ giác MNPQ là hình thoi
b) Hình bình hành ABCD phải có thêm điều kiện gì để tứ giác MNPQ là hình vuông
3)cho hình chữ nhật ABCD , BH vuông góc với AC. gọi M,K lần lượt là trung điểm của HC và AD. chứng minh BM vuông góc với KM.
Cho hình bình hành ABCD gọi E, F thứ tự là trung điểm của AB và CD. Vẽ các đoạn thẳng AF, CE, DE, BF, EF.
a) Tìm các hình bình hành có trong hình vẽ ( có chứng minh)
b) Gọi O là giao điểm của AC và AD. Chứng minh O, F, E thẳng hàng
Cho hình bình hành ABCD, O là giao điểm của 2 đường chéo. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. Các đường thẳng BM, DN cắt đường chéo AC luần lượt tại P, Q.
a, C/m AP = PQ = QC
b, Tứ giác MPNQ là hình gì. Vì sao?
c, Xđ tỉ số CA/CD để MPNQ là hcn
M.n giúp mk lm bài này vs nhé...Ths các bn nhiều
1. Hình thang cân ABCD có O là giao điểm của hai đường thẳng chứa cạnh bên AD,BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực cảu hai đáy.
2. Hình thang cân ABCD (AB//CD) có hai đường chéo cắt nhau tại I, hai đường thẳng chứa các cạnh bên cắt nhau ở K. Chứng minh rằng KI là đường trung trực của hai đáy.
Cho hình bình hành ABCD, kẻ AE và CF vuông góc với BD.
a) Tứ giác AECF là hình gì? Vì sao?
b) AE cắt CD tại I, CF cắt AB tại K. Chứng minh trung điểm O của IK thuộc đường chéo BD.
c) Vẽ BM và DN vuông góc AC. Chứng minh EMFN là hình bình hành.
d) Các phân giác AG và BH của tam giác AOB cắt nhau tại P. Các phân giác DY, Cl của tam giác DOC cắt nhau tại Q. Chứng minh O là trung điểm PQ.
Cho hình bình hành ABCD, kẻ AE và CF vuông góc với BD.
a) Tứ giác AECF là hình gì? Vì sao?
b) AE cắt CD tại I, CF cắt AB tại K. Chứng minh trung điểm O của IK thuộc đường chéo BD.
c) Vẽ BM và DN vuông góc AC. Chứng minh EMFN là hình bình hành.
d) Các phân giác AG và BH của tam giác AOB cắt nhau tại P. Các phân giác DY, Cl của tam giác DOC cắt nhau tại Q. Chứng minh O là trung điểm PQ.