Cho hình bình hành ABCD , trên các cạnh AB và CD thứ tự lấy các
điểm M , N sao cho AM = CN . Trên các cạnh AD và BC thứ tự lấy các điểm P , Q
sao cho AP = CQ . Chứng minh rằng :
a) Tứ giác AMCN là hình bình hành.
b) Tứ giác MPNQ là hình bình hành.
Cho hình bình hành ABCD có E, F lần lượt là trung điểm của AB và CD. Gọi giao điểm của AC với DE và BF theo thứ tự là M và N
a) CM: các tứ giác DEBF, EMFN là hình bình hành
b) Hình bình hành ABCD cần thêm điều kiện gì để tứ giác MENF là hình thoi
Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2S_{\Delta APQ}\)
Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2.S_{\Delta APQ}\)
Cho tứ giác lồi ABCD. Trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho MA=kMB, ND=k.NC( k là 1 số thực dương). Gọi P, Q, R theo thứ tự là các trung điểm của các đoạn thẳng AD, BC,MN.
a) CHứng minh: 3 điểm P, Q, R thẳng hàng.
b) So sánh RP/RQ=MA/MB
c) Đường thẳng qua E và song song với BD cắt AD tại I
Đường thẳng qua F và song song với BD cắt BC tại K.
Chứng minh: Các đường thẳng AC, EF và IK cũng đi qua trung điểm O của BD
d) Biết góc AOD = 60o và AD=1cm. Tính OA, OD và diện tích ABCD
Cho tứ giác ABCD có AD=BC và AB<CD. Trung điểm của cạnh AB và CD lần lượt là
M và N. Trung điểm của các đường chéo BD và AC lần lượt là P và Q.
a) Chứng minh tứ giác MPNQ là hình thoi
b) Kéo dài hai cạnh DA và CB cắt nhau tại G, kẻ tia phân giác Gx của góc AGB. Chứng
minh Gx//MN.
Câu 1 : Cho tam giác ABC cân tại A . GỌi các điểm P,Q,M lần lượt là trung điểm của AB,AC,BC.
1.Chứng minh tứ giác PQCM là hình bình hành
2.TRên tia đối của tia PM lấy điểm N sao cho PM=PN. Chứng minh NB vuông góc với BC
3.Đường thẳng đi qua điểm Q và song song với PC cắt BC tại F. CHứng minh N,Q,F thẳng hàng .
Câu 2:
Tìm giá trị nhỏ nhất của biểu thức \(B=2x^2+4y^2+4x^2y-10x^2-4y+2037\)
Cho tam giác ABC vuông tại A, D là điểm nằm giữa B và C. Qua D kẻ các đường thẳng song song với AB và AC theo thứ tự ở E và F.
a) Tứ giác AEDF là hình gì? Vì sao?
b) Điểm D ở vị trí nào trên cạnh BC thì tứ giác AEDF là hình vuông?