cho hình bình hành (ABCD) nằm trên mặt phẳng (P) và 1 điểm S nằm ngoài mặt phẳng (P) . Gọi M là điểm nằm giữa S và A ; N là điểm nằm giữa S và B ; giao điểm của 2 đường thẳng AC và BD là O .
a) tìm giao điểm của mặt phẳng (CMN) với O đường thẳng SO .
b) xác định giao tuyến của 2 mặt phẳng (SAD) và (CMN) .
cho hình bình hành (ABCD) nằm trên mặt phẳng (P) và 1 điểm S nằm ngoài mặt phẳng (P) . Gọi M là điểm nằm giữa S và A ; N là điểm nằm giữa S và B ; giao điểm của 2 đường thẳng AC và BD là O .
a) tìm giao điểm của mặt phẳng (CMN) với O đường thẳng SO .
b) xác định giao tuyến của 2 mặt phẳng (SAD) và (CMN) .
Cho hình bình hành ABCD nằm trong mặt phẳng (a) và điểm S không thuộc (a). Gọi M, P lần lượt là trung điểm của SA, BC. N là điểm trên cạnh SB sao cho BN=1/4BS. Xác định giao tuyến của mp (MNP) với các mp: a, (ABCD) b, (SAD) c, (SCD)
Cho tứ giác ABCD nằm trong mặt phẳng \(\left(\alpha\right)\) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng \(\left(\alpha\right)\) và M là trung điểm đoạn SC
a) Tìm giao điềm N của đường thẳng SD và mặt phẳng (MAB) ?
b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy ?
cho tứ giác ABCD nằm trong mp (a) và điểm S không thuộc (a). Trên SD lấy N. Xác định giao tuyến của mp (BCN) với các mp (SAB), (SAD)
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD, trên cạnh AD lấy điểm P không trùng với trung điểm của AD.
a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)
b) Tìm giao điểm của mặt phẳng (PMN) và BC
Cho tứ giác ABCD nằm trong mp(a) và điểm S không thuộc (a). AB cắt CD tại E và AC cắt BD tại F. Tìm giao tuyến của ( SEF) với các mp (SAD) và (SBC)
Cho tứ giác ABCD nằm trong mp(a) và điểm S không thuộc (a). AB cắt CD tại E và AC cắt BD tại F. Tìm giao tuyến của ( SEF) với các mp (SAD) và (SBC)
cho 2 đường thẳng a và b cắt nhau tại O và đường thẳng c cắt mp(a,b) ở điểm I khác O . Gọi M là điểm di động trên C và khác I . chứng minh rằng giao tuyến của các mặt phẳng (M,a) và (M,b) nằm trên một mặt phẳng cố định .