cho tam giác ABC . gọi M là điểm thuộc cạnh AB , N là điểm thuộc cạnh AC sao cho AM =\(\dfrac{1}{3}\) AB , AN =\(\dfrac{3}{4}\) AC . gọi O là giao điểm của CM và BN
a) Biểu diễn vecto \(\overrightarrow{AO}\) theo 2 vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) trên đường thẳng BC lấy E . Đặt \(\overrightarrow{BE}\)= x.\(\overrightarrow{BC}\) . tìm x để A,O ,E thẳng hàng
cho tứ giác ABCD không là hình bình hành gọi M,N là 2 điểm chạy trên AB, CD sao cho ND/NC=MB/MA=m/n. Gọi E,F,I là trung điểm AC,BD và MN. Đặt AM/AB=CN/CD=k. Đẳng thức nào sau đây là đúng:
A) vecto EI=1/k vecto EF
B) vecto EI=k vecto EF
C) vecto EI+-k vecto EF
D) vecto EI=k/2 vecto EF
1.Cho tam giác ABC có trực tâm H,nội tiếp trong đường tròn (O) , M là trung điểm của BC, AA' và BB' là hai đường kính của (O).
a)CM: vecto AH= vecto B'C, vecto HC= vecto AB'
b)CM:vecto HM= vecto MA'
c)Gọi K là trung điểm AH.CM vecto AK= vecto OM
d)AH cắt BC tại Q,cắt (O) tại N#A.CM: vecto HQ=vecto QN
2.Cho tam giác ABC có trọng tâm G.Dựng vecto CD=vecto GB.CM: vecto AG=GB
Cho 4 điểm A,B,C,D. Gọi E,F lần lượt là trung điểm AB, CD. CMR
Vecto BC + vecto AD - vecto BC = vecto DC + vecto AB - vecto DB
Cho tam giác ABC. Đặt vecto CA = vecto a, vecto CB = vecto b. Lấy các điểm A’ và B’ sao cho vecto CA’ = -2 vecto a, vecto CB’ = 2 vecto b. Gọi I là giao điểm của A’B và B’A. Giả sử vecto CI = m. vecto a + n. vecto b. Khi đó m/n bằng?
cho tam giác ABC nội tiếp đường tròn O . Gọi H là trực tâm của tam giác . AH cắt BC tại I . AH cắt (O) tại M (khác A) . C/M :
a. Vecto HI = Vecto IM
b.Gọi K là trung điểm BC . C/m vecto AH và vecto OK cùng hướng
c.HK cắt (O) tại D . CMR : vecto BH = vecto DC , vecto BD = vecto HC
cho tam giác ABC có G là trọng tâm , I là trung điểm của AB . a) phân tích vecto CI và AG theo vecto BA và BC. b) gọi E,F là 2 điểm thỏa : 4 vecto BE- vecto BC = vecto không, vecto FA = m vecto AC . Tìm m để E,F,I thẳng hàng
1. Cho hbh ABCD. Đặt vecto AB=a, AD=b. Gọi I là trung điểm của CD, G là trọng tâm của tam giác BCI. Phân tích các vecto BI, CG theo vecto a,b
2. Cho tam giác ABC có trọng tâm G. Gọi D là điểm đối xứng của A qua B và E là điểm trên đoạn AC sao cho AE =2/5 AC
a) phân tích vecto DE, DG theo vecto AB và AC
b) cmr D,G,E thẳng hàng
c) xét K là điểm thỏa vecto KA + KB + 3KC = 2KD. CMR KG//CD
Cho tam giác ABC. Gọi M, N, P lần lược là trung điểm BC, CA, AB. Dựng vecto MK=vecto CP, vecto KL=vecto BN
a) CMR: vecto KP=vecto PN
b) tứ giác AKBN là hình gì?
C) CMR: vecto AL=vecto 0