Luyện tập về ba trường hợp bằng nhau của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ma Thị Huế

Cho hình bình hành ABCD gọi I,J lần lượt là trung điểm của BC,CD . Chứng minh AI , A J chia đường chéo BD thành ba phần bằng nhau.

missing you =
16 tháng 6 2021 lúc 9:20

gọi giao điểm của AJ với BD là H

giao điểm của AI với BD là E

giao điểm 2 đường chéo AC và BD là K

do ABCD là hình bình hành\(=>\left\{{}\begin{matrix}AK=KC\\KD=KB\end{matrix}\right.\)

\(=>DK\) là tiếp tuyến trong \(\Delta ADC\)

mà AJ cũng là tiếp tuyến trong \(\Delta ADC\)(do J là trung điểm CD)

\(=>H\) là trọng tâm \(=>BH=\dfrac{2}{3}DK=\dfrac{2}{3}.\dfrac{1}{2}.BD=\dfrac{1}{3}BD\left(1\right)\)

chứng minh tương tự đối với \(\Delta ACB=>E\) là trọng tâm

\(=>BE=\dfrac{2}{3}KB=\dfrac{2}{3}.\dfrac{1}{2}.BD=\dfrac{1}{3}BD\left(2\right)\)

\(\left(1\right)\left(2\right)\)\(=>HE=\dfrac{1}{3}BD=HD=EB\left(dpcm\right)\)


Các câu hỏi tương tự
Bùi Ngọc Mai
Xem chi tiết
Nam Nguyễn
Xem chi tiết
kUchan
Xem chi tiết
Huyen Nguyenhuyen85
Xem chi tiết
Đạt Bonclay
Xem chi tiết
23. Thảo Nhi
Xem chi tiết
NGUYỄN THANH PHONG
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Đào Gia Phong
Xem chi tiết