Cho hình bình hành ABCD. Lấy E,F thuộc BD lấy điểm E và F sao cho DE= BF. a) CM AECF là hình bình hành
b) Gọi M, N lần lượt là giao điểm của AE, CF với DC và AB. Chứng tỏ AC, BD, MN đồng quy.
Cho hình bình hành ABCD. Lấy E,F thuộc BD lấy điểm E và F sao cho DE= BF.
a) CM AE//CF
b) Gọi M, N lần lượt là giao điểm của AE, CF với DC và AB. Chứng tỏ AC, BD, MN đồng quy.
Cho hình bình hành ABCD (AB > AD). Kẻ AE//BD (E thuộc BD), CF//BD
(F thuộc BD). Chứng minh :
a) tam giác AED = tam giác CFB
b) AECF là hình bình hành
Cho hình bình hành ABCD. Lấy các điểm E thuộc AB, F thuộc CD sao cho AE = CF; lấy các điểm G thuộc BC, H thuộc AD sao cho BG = DH. Cm EGFH là 1 hình bình hành và các đường thẳng AC, BD, EF, GH đồng quy.
(Mình đang cần gấp các bạn giúp mình nha)
Cho hình bình hành ABCD, E, F thuộc đường chéo BD, sao cho BE = DF
a/ Chứng minh AE // CF
b/ AE cắt BC tại K, CF cắt AD tại I. Chứng minh tứ giác AKCI là hình bình hành
cho hiình bình hành ABCD . Lấy E thuộc AB , F thuộc DC sao cho AE=CF . Chứng minh :
a, AECF là hình bình hành .
b, DE =BF
Cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD
1) Chứng minh tứ giác AECF là hình bình hành
2) Chứng minh O là trung điểm của EF
cho tam giác ABC vuông cân tại A. Trên đoạn thằng AB lấy điểm E, trên tia đối của tia CA lấy điểm F sao cho BE=CF. Vẽ hình bình hành BEFD. Gọi I là giao điểm của EF và BC. Qua E kẻ đường thẳng vuông góc với Ab cắt BI tại K
a. cmr tứ giác EKFC là hình bình hành
b. qua I kẻ đường thẳng vuông góc với AF cắt BD tại M. cmr: AI=BM
c. cmr C đối xứng với D qua MF
Cho HBH ABCD. Trên cạnh AB lấy điểm A và trên cạnh lấy điểm f sao cho AE=CF. CM:
a) Tứ giác AECF là hình bình hành
b) 3 điểm E;O;F thẳng hàng