Bài 7: Tứ giác nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho hình bình hành ABCD. Đường tròn đi qua ba đỉnh A, B, C cắt đường thẳng CD tại P khác C. Chứng minh AP = AD.

Quang Duy
11 tháng 4 2017 lúc 16:28

Do tứ giác ABCP nội tiếp nên ta có:

+ = 180o (1)

Ta lại có: + = 180o (2)

(hai góc trong cùng phía tạo bởi cát tuyến CB và AB // CD)

Từ (1) và (2) suy ra: =

Vậy ABCP là hình thang cân, suy ra AP = BC (3)

nhưng BC = AD (hai cạnh đối đỉnh của hình bình hành) (4)

Từ (3) và (4) suy ra AP = AD.



Đặng Phương Nam
11 tháng 4 2017 lúc 17:52

Do tứ giác ABCP nội tiếp nên ta có:

+ = 180o (1)

Ta lại có: + = 180o (2)

(hai góc trong cùng phía tạo bởi cát tuyến CB và AB // CD)

Từ (1) và (2) suy ra: =

Vậy ABCP là hình thang cân, suy ra AP = BC (3)

nhưng BC = AD (hai cạnh đối đỉnh của hình bình hành) (4)

Từ (3) và (4) suy ra AP = AD.


Aries
17 tháng 3 2020 lúc 20:39

Do tứ giác ABCP nội tiếp nên ta có:

+ = 180o (1)

Ta lại có: + = 180o (2)

(hai góc trong cùng phía tạo bởi cát tuyến CB và AB // CD)

Từ (1) và (2) suy ra: =

Vậy ABCP là hình thang cân, suy ra AP = BC (3)

nhưng BC = AD (hai cạnh đối đỉnh của hình bình hành) (4)

Từ (3) và (4) suy ra AP = AD.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Kiều Lam
Xem chi tiết
Hải Yến Đỗ Thị
Xem chi tiết
Tuấn Đỗ
Xem chi tiết
Mai Tuyết
Xem chi tiết
Phạm khánh linh
Xem chi tiết
thu hà
Xem chi tiết
Nguyễn Quyên
Xem chi tiết
Thương Phạm
Xem chi tiết