Do tứ giác ABCP nội tiếp nên ta có:
+ = 180o (1)
Ta lại có: + = 180o (2)
(hai góc trong cùng phía tạo bởi cát tuyến CB và AB // CD)
Từ (1) và (2) suy ra: =
Vậy ABCP là hình thang cân, suy ra AP = BC (3)
nhưng BC = AD (hai cạnh đối đỉnh của hình bình hành) (4)
Từ (3) và (4) suy ra AP = AD.
Do tứ giác ABCP nội tiếp nên ta có:
+ = 180o (1)
Ta lại có: + = 180o (2)
(hai góc trong cùng phía tạo bởi cát tuyến CB và AB // CD)
Từ (1) và (2) suy ra: =
Vậy ABCP là hình thang cân, suy ra AP = BC (3)
nhưng BC = AD (hai cạnh đối đỉnh của hình bình hành) (4)
Từ (3) và (4) suy ra AP = AD.
Do tứ giác ABCP nội tiếp nên ta có:
+ = 180o (1)
Ta lại có: + = 180o (2)
(hai góc trong cùng phía tạo bởi cát tuyến CB và AB // CD)
Từ (1) và (2) suy ra: =
Vậy ABCP là hình thang cân, suy ra AP = BC (3)
nhưng BC = AD (hai cạnh đối đỉnh của hình bình hành) (4)
Từ (3) và (4) suy ra AP = AD.