a: góc ABM=góc CBM
=>góc ABM=góc AMB
=>ΔABM cân tại A
b: Xét ΔBAM và ΔDCN có
góc BAM=góc DCN
BA=DC
góc ABM=góc CDN
=>ΔBAM=ΔDCN
=>BM=DN và AM=CN
=>BN=DM
=>DMBN là hình bình hành
a: góc ABM=góc CBM
=>góc ABM=góc AMB
=>ΔABM cân tại A
b: Xét ΔBAM và ΔDCN có
góc BAM=góc DCN
BA=DC
góc ABM=góc CDN
=>ΔBAM=ΔDCN
=>BM=DN và AM=CN
=>BN=DM
=>DMBN là hình bình hành
Cho hình bình hành ABCD . tia phân giác góc B cắt DC tại M , Tia phân giác Của góc D cắt AB tại N: a) chứng minh Tam giác ADN = tam giác CBM b) C/m tứ giác DMBN là hình bình hành c) C/m tức giác AMCN là hình bình hành
Bài 2: cho hình bình hành ABCD có AB>BC, phân giác của góc D cắt AB tại M,phân giác của góc B cắt CD tại N.c/m
a,AM=CN
b,tứ giác DMBN là hình bình hành
Cho hình bình hành ABCD có AB<AD. Tia phân giác của góc A cắt BC tại I, tia phân giác góc C cắt AD tại K. Chứng minh:
a) Tam giác ABI cân
b) AICK là hình bình hành
Giải giúp mk vs!
Cho hình bình hành ABCD (AB<AD).Tia phân giác góc A cắt BC tại I,tia phân giác C^ cắt AD tại K.
a)So sánh hai góc IAD^ và CKD^
b)Tứ giác AICK LÀ hình gì ? Giải thích
Bài 1 : Cho hình bình hành ABCD ( AB > BC ) . Tia phân giác của góc D cắt AB ở E , tia phân giác của góc B cắt CD ở F . a ) Chứng minh DE // BF b ) Tứ giác DEBF là hình gì Bài 2 : Cho hình bình hành ABCD . gọi K , I lần lượt là trung điểm của các cạnh AB , CD . Gọi M , N lần lượt là giao điểm của AI , CK với đường chéo BD . Chứng minh AC , BD , IK đồng quy tại một điểm
Cho hình bình hành ABCD có đường chéo BD tại M , cắt CD tại E . Từ C kẻ đường thẳng vuông góc BD tại N , cắt AB tại F. Chứng minh rằng : a) tam giác AMD = tam giác CNB b) tứ giác AMCN là hình bình hành c) tứ giác AECF là hình bình hành ( CÓ HÌNH VẼ) GIÚP EM VỚI Ạ EM ĐANG CẦN GẤP
Cho hình bình hành ABCD, phân giác góc A cắt cạnh CD tại M; phân giác góc C cắt
cạnh AB tại N. Chứng minh :
a) DM=AD;BN=BC
Cho tam giác ABC nhọn(AB>BC).Gọi M,N,P lần lượt là trung điểm AB,AC,BC.Trên tia đối tia NM lấy D sao cho ND=NM.Chứng minh a) Tứ giác BMNP là hình bình hành b)BN//DP c)PN đi qua trung điểm AD d)Gọi MC cắt PD ở E. Chứng minh DE=2PE
Cho tam giác ABC có E,F,D lần lượt là trung điểm AB, BC và CA. Chứng minh: a) tứ giác BFED là hình bình hành. b) Trên tia đối của tia FD lấy điểm M sao cho FD=FM. Chứng minh tứ giác ABDM là hình bình hành. c) Chứng minh tứ giác AMCD là hình bình hành.