Hình học lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Khánh Loan

Cho hình bình hành ABCD có AB=2AD. Gọi E,F lần lượt là trung điểm của AB và CD.

a) Chứng minh BEDF là hình bình hành

b) Chúng minh AF vuông góc DE

c) Gọi M là giao điểm của AF và DE, N là giao điểm của EC và BF. Chứng minh MN=EF

d) Hãy bổ sung thêm điều kiện vào đề bài để tứ giác EMNF là hình vuông

( vẽ hình cho mình xem luôn nha, mong mb giúp mình làm bài này) :)))

Nguyễn Lê Phước Thịnh
8 tháng 4 2022 lúc 8:30

a: Xét tứ giác BEDF có 

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

b: Xét tứ giác AEFD có 

AE//FD
AE=FD

Do đó: AEFD là hình bình hành

mà AE=AD

nên AEFD là hình thoi

=>DE vuông góc với AF

Xét tứ giác BEFC có 

BE//FC

BE=FC

Do đó: BEFC là hình bình hành

mà BC=BE

nên BEFC là hình thoi

=>EC vuông góc với BF

Xét ΔEDC có 

EF là đường trung tuyến

EF=DC/2

Do đó: ΔEDC vuông tại E

Xét tứ giác EMFN có \(\widehat{EMF}=\widehat{ENF}=\widehat{MEN}=90^0\)

nên EMFN là hình chữ nhật

Suy ra: EF=MN


Các câu hỏi tương tự
Ngọc Thành
Xem chi tiết
hoàng hải anh
Xem chi tiết
NT Mỹ Châu
Xem chi tiết
Thư Vũ
Xem chi tiết
Thùy Trang
Xem chi tiết
Thùy Trang
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
meo con
Xem chi tiết
Đào Thị Phương Duyên
Xem chi tiết