Ôn tập hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
minh hanh dao

cho hệ phương trình{ x+my= m+1

                                   mx+y=3m-1

tìm m để hpt No duy nhất mà x=|y|

 

Trương Huy Hoàng
30 tháng 3 2021 lúc 21:16

\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y=3m-1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-my\\y\left(m^2-1\right)=m^2-2m+1\end{matrix}\right.\)

Với m = 1 ta có: \(\left\{{}\begin{matrix}x=2-y\\0y=0\left(VSN\right)\end{matrix}\right.\)

\(\Rightarrow\) Hpt vô số nghiệm

Với m = -1 ta có: \(\left\{{}\begin{matrix}x=y\\0y=4\left(VN\right)\end{matrix}\right.\)

\(\Rightarrow\) Hpt vô nghiệm

Với m \(\ne\) \(\pm\)1 ta có: \(\left\{{}\begin{matrix}x=m+1-my\\y=\dfrac{m^2-2m+1}{m^2-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-\dfrac{m\left(m-1\right)^2}{\left(m-1\right)\left(m+1\right)}=m+1-\dfrac{m\left(m-1\right)}{m+1}=m+1-\dfrac{m^2-m}{m+1}\\y=\dfrac{m^2-2m+1}{m^2-1}=\dfrac{\left(m-1\right)^2}{\left(m-1\right)\left(m+1\right)}=\dfrac{m-1}{m+1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\\y=\dfrac{m-1}{m+1}\end{matrix}\right.\)

Vậy hpt có nghiệm duy nhất x = ..; y = ... với x \(\ne\) \(\pm\) 1

Ta có: x = |y|

\(\Leftrightarrow\) \(\dfrac{3m+1}{m+1}=\left|\dfrac{m-1}{m+1}\right|\) 

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\dfrac{3m+1}{m+1}=\dfrac{m-1}{m+1}\\\dfrac{3m+1}{m+1}=\dfrac{1-m}{m+1}\end{matrix}\right.\)

\(\Rightarrow\) \(\left[{}\begin{matrix}3m+1=m-1\\3m+1=1-m\end{matrix}\right.\) (Vì m \(\ne\) -1)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2m=-2\\4m=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=-1\\m=0\end{matrix}\right.\) 

Vì m \(\ne\) -1 nên m = -1 KTM

\(\Rightarrow\) m = 0 thỏa mãn đk

Vậy m = 0

Chúc bn học tốt!


Các câu hỏi tương tự
Tuấn Kiên Phạm
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Đinh Diệp
Xem chi tiết
Hoàng Nguyễn
Xem chi tiết
Đinh Diệp
Xem chi tiết
Hoa học trò
Xem chi tiết
Nguyễn Vũ Đăng Trọng
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Lê Đức Mạnh
Xem chi tiết