Bài 1: Cho hệ phương trình \(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\) (m là tham số). Tìm các giá trị tham số m để hệ phương trình:
a) Có nghiệm duy nhất
b) Vô nghiệm
c) Vô số nghiệm
Bài 2: Cho hệ phương trình \(\left\{{}\begin{matrix}x-\left(m+1\right)y=1\\4x-y=-2\end{matrix}\right.\) (m là tham số). Tìm các giá trị m nguyên để hệ phương trình có nghiệm duy nhất (x, y) sao cho x và y nguyên.
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m+1\right)x+3y=5\\5x-2y=3\end{matrix}\right.\) với m là tham số
a. Giải hệ với m = 1
b. Với giá trị nào của m thì hệ phương trình đã cho :
+ Vô nghiệm
+ Có nghiệm duy nhất
c. Tìm m để hệ phương trình có nghiệm duy nhật (x;y) thảo mãn x + y = 5
Cho hệ pt \(\left\{{}\begin{matrix}x+y=2\\mx-y=m\end{matrix}\right.\)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) là những số nguyên
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(2m+1\right)x+y=2m-2\\m^2x-y=m^2-3m\end{matrix}\right.\)
Trong đó \(m\in Z,m\ne-1\). Xác định m để hệ phương trình có nghiệm nguyên
Bài 1: Tìm a để hệ pt vô nghiệm: \(\left\{{}\begin{matrix}\sqrt{2}x+ay=-1\\5\sqrt{2}x+3\sqrt{3}y=1\end{matrix}\right.\)
Bài 2: Tìm m và k để hệ pt vô số nghiệm: \(\left\{{}\begin{matrix}2x-3y=2\\mx+ky=4\end{matrix}\right.\)
Bài 3: Chứng minh (D): y=2x+1 ; (\(D_1\)): 2y+x=7 và (\(D_2\)): y=x+2 đồng quy
Bài 4: Tìm m để hệ pt có 1 nghiệm duy nhất: \(\left\{{}\begin{matrix}3+my=m\\\left(m-1\right)x+2y=m-1\end{matrix}\right.\)
Bài 5: a) Dùng phương pháp hình học để ktra kết quả của phương trình: \(\left\{{}\begin{matrix}x-3y=0\\2x-y=5\end{matrix}\right.\)
b) Tìm tọa độ của (d): y=x+1 và (d'): y=3x-2 bằng đồ thị và bằng phép toán
Mọi người giúp em với ạ!!!!!!!!!
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(a+1\right)x-y=3\\ã+y=a\end{matrix}\right.\)
a) Giải hệ phương trình với a = \(-\sqrt{2}\)
b) Xác định giá trị của m,n để hệ phương trình có nghiệm duy nhất
Cho hệ phương trình: \(\left\{{}\begin{matrix}x+2y=5\left(1\right)\\mx+y=4\left(2\right)\end{matrix}\right.\)
a) Tìm m để hệ phương trình có nghiệm duy nhất mà x và y trái dấu.
b) Tìm m để hệ phương trình có nghiệm duy nhất mà \(x=\left|y\right|\)
Cho hệ PT \(\left\{{}\begin{matrix}xy+x^2=m\left(y-1\right)\\xy+y^2=m\left(x-1\right)\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất