Câu hỏi của Ngọc's Trâm's - Toán lớp 9 | Học trực tuyến
Câu hỏi của Ngọc's Trâm's - Toán lớp 9 | Học trực tuyến
Cho hệ phương trình :\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\) (m là tham số)
Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x + y < 0
Cho hệ phương trình \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\left(I\right)\) (m là tham số) .
a) Giải hệ phương trình (I) khi m=1.
b) Tìm m để hệ (I) có nghiệm duy nhất (x,y) thỏa mãn x+y=-3.
1. Cho hệ phương trình \(\left\{{}\begin{matrix}2x-y=m-1\\3x+y=4m+1\end{matrix}\right.\) (m là tham số)
a) Giải hệ phương trình vớim=2
b) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(2x^2-3y=2\)
Cho hệ phương trình\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\)
Tìm m để hệ phương trình có nghiệm (x;y) thỏa x+y+1=\(\frac{m^3}{m^3+3}\)
Cho HPT: \(\left\{{}\begin{matrix}x-2y=4m-5\\2x+y=3m\end{matrix}\right.\). Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn: \(\dfrac{2}{x}-\dfrac{1}{y}=-1\)
Cho HPT: \(\left\{{}\begin{matrix}x-2y=4m-5\\2x+y=3m\end{matrix}\right.\). Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn: \(\dfrac{2}{x}-\dfrac{1}{y}=-1\)
a,Tìm m để hệ phương trình \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)có nghiệm duy nhất (x;y) thỏa mã x+y= -3.
b, Tìm m để hệ phương trình \(\left\{{}\begin{matrix}mx-y=1\\x+my=m+6\end{matrix}\right.\)có nghiệm (x;y) thỏa mãn 3x -y =1.
c, Tìm các giá trị của m để hệ phương trình \(\left\{{}\begin{matrix}mx-2y=m\\-2x+y=m+1\end{matrix}\right.\)có nghiệm duy nhất (x;y) sao cho x-y=1
d, Tìm m để hệ phương trình \(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=2\end{matrix}\right.\)có nghiệm (x;y) thỏa mãn \(x^2-2y^2=1\)
cho hpt:\(\left\{{}\begin{matrix}2x-y=m-1\\3x+y=4m+1\end{matrix}\right.\)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(2x^2-3y=2\)
giúp mk với mk cần gấp lắm
cho hệ phương trình : \(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\) tìm điều kiện của m để hệ phương trình có nghiệm duy nhất ( x;y ) thỏa mãn hệ thức \(x+y=1-\frac{m^2}{m^2+3}\)