Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen ngoc son

Cho hệ phương trình :\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\) (m là tham số)

Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x + y < 0

Akai Haruma
16 tháng 12 2021 lúc 21:41

Lời giải:
Từ PT$(1)\Rightarrow x=m+1-my$. Thay vô PT(2):

$m(m+1-my)+y=3m-1$

$\Leftrightarrow y(1-m^2)+m^2+m=3m-1$

$\Leftrightarrow y(1-m^2)=-m^2+2m-1(*)$

Để hpt có nghiệm $(x,y)$ duy nhất thì pt $(*)$ cũng phải có nghiệm $y$ duy nhất 

Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow m\neq \pm 1$
Khi đó: $y=\frac{-m^2+2m-1}{1-m^2}=\frac{-(m-1)^2}{-(m-1)(m+1)}=\frac{m-1}{m+1}$

$x=m+1-my=m+1-\frac{m(m-1)}{m+1}=\frac{3m+1}{m+1}$

Có:

$x+y=\frac{m-1}{m+1}+\frac{3m+1}{m+1}=\frac{4m}{m+1}<0$

$\Leftrightarrow -1< m< 0$

Kết hợp với đk $m\neq \pm 1$ suy ra $-1< m< 0$ thì thỏa đề.


Các câu hỏi tương tự
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Big City Boy
Xem chi tiết
Mã Huy Hiệu
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Phạm Khánh Huyền
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Kondou Inari
Xem chi tiết