Bài 1: Chứng minh bất phương trình:
a) x2+2mx+2m+3>0, ∀xϵR
b) mx2+(m-1)x+m+1≤0, ∀xϵR
c) (m-1)x2+2mx+2-3m>0, vô nghiệm
Bài 2: Phương trình: mx2+(m-1)x+1-m=0
a) Có nghiệm
b) Có 2 nghiệm phân biệt
c) Có 2 nghiệm trái dấu
d) Có 2 nghiệm dương phân biệt
e) Có 2 nghiệm âm phân biệt
Bài 3. Xác định m để hệ bất phương trình sau có nghiệm, vô nghiệm, có nghiệm duy nhất?a)\(\left\{{}\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}x+4m^2\le2mx+1\\3x+2>2x-1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}7x-2\ge-4x+19\\2x-3m+2< 0\end{matrix}\right.\) e)\(\left\{{}\begin{matrix}mx-1>0\\\left(3m-2\right)x-m>0\end{matrix}\right.\)
Câu 1: Tìm m để biểu thức sau luôn âm: (m-4)x2+ (m+1)x + 2m-1
Câu 2: Tìm m để bất phương trình sau có nghiệm đúng với mọi x:
a/ \(\dfrac{3x^2-5x+4}{\left(m-4\right)x^2+\left(1+m\right)x+2m-1}>0\)
b/ \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)
GIÚP MÌNH VỚI Ạ!!!
Tìm tất cả các giá trị của tham số m để bất phương trình : -x2+x-m>0 vô nghiệm
cho hàm số y=f(x)=x2. Tìm m để bất phương trình f(x-3)+5-m>0 cố tập nghiệm là R
Tìm m để phương trình (m+1)x2 + 2mx + 2 ≤ 0 ∀x ∈ R
Hệ bất phương trình \(\left\{{}\begin{matrix}2x-1>0\\x-m< 2\end{matrix}\right.\) có nghiệm khi và chỉ khi
Cho bất phương trình x2-2mx+2|x-m|-m2+2>0
Tìm m để bất phương trình nghiệm đúng với mọi x thuộc R
Tìm m để các phương trình (m+3)x4-(2m-1)x2-3 =0 có:
1/ Một nghiệm
2/ Hai nghiệm phân biệt
3/ Bốn nghiệm phân biệt