Ôn tập chương IV

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thảo Nguyên

Tìm m để các phương trình (m+3)x4-(2m-1)x2-3 =0 có:

1/ Một nghiệm

2/ Hai nghiệm phân biệt

3/ Bốn nghiệm phân biệt

Akai Haruma
5 tháng 3 2021 lúc 20:53

Lời giải:

Nếu $m=-3$ thì PT trở thành: $7x^2-3=0$ có nghiệm $x=\pm \sqrt{\frac{3}{7}}$

-------------------------------------------------------------

Nếu $m\neq -3$Đặt $x^2=t$ thì pt trở thành:

$(m+3)t^2-(2m-1)t-3=0(*)$

1. Để pt ban đầu có 1 nghiệm thì PT $(*)$ có nghiệm $t=0$ và nếu có nghiệm còn lại thì nghiệm đó âm.

Để PT $(*)$ có nghiệm $t=0$ thì: $(m+3).0-(2m-1).0-3=0\Leftrightarrow -3=0$ (vô lý)

Do đó không tồn tại $m$ để pt có 1 nghiệm.

2. Để pt ban đầu có 2 nghiệm phân biệt thì PT $(*)$ có 1 nghiệm dương kép hoặc có 1 nghiệm dương và 1 nghiệm âm.

PT có 1 nghiệm dương, 1 nghiệm âm khi \(\left\{\begin{matrix} \Delta (*)=(2m-1)^2+12(m+3)> 0\\ P=\frac{-3}{m+3}<0\end{matrix}\right.\)

\(\Leftrightarrow m>-3\)

PT có nghiệm kép dương $\Leftrightarrow \Delta (*)=(2m-1)^2+12(m+3)=0\Leftrightarrow 4m^2+8m+37=0$ (vô lý)

Vậy $m>-3$

3.

PT ban đầu có 4 nghiệm phân biệt khi PT $(*)$ có 2 nghiệm dương phân biệt

Điều này xảy ra khi \(\left\{\begin{matrix} \Delta (*)=(2m-1)^2+12(m+3)>0\\ S=\frac{2m-1}{m+3}>0\\ P=\frac{-3}{m+3}>0\end{matrix}\right.\Leftrightarrow m< -3\)


Các câu hỏi tương tự
phamthiminhanh
Xem chi tiết
camcon
Xem chi tiết
dung doan
Xem chi tiết
Hạ Băng Băng
Xem chi tiết
DuaHaupro1
Xem chi tiết
Lê Thanh Tuyền
Xem chi tiết
Thảo Nguyên
Xem chi tiết
DuaHaupro1
Xem chi tiết
Bé Poro Kawaii
Xem chi tiết