Bài 5: Khoảng cách

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Charlotte Grace

Cho h/chóp S.ABC có đáy ABC là tam giác đều cạnh bằng a, \(SA\perp\left(ABC\right)\), SA = 2a. Gọi P là điểm trên cạnh AB sao cho \(BP=\dfrac{1}{3}AB\). Tính khoảng cách từ điểm B đến mặt phẳng (SPC).

Nguyễn Việt Lâm
27 tháng 4 2021 lúc 18:09

\(BP=\dfrac{1}{3}AB\Rightarrow BP=\dfrac{1}{2}AP\)

\(\Rightarrow d\left(B;\left(SPC\right)\right)=\dfrac{1}{2}d\left(A;\left(SPC\right)\right)\)

Trong tam giác APC, kẻ \(AH\perp CP\Rightarrow CP\left(SAH\right)\)

Trong tam giác vuông SAH, kẻ \(AK\perp SH\Rightarrow AK\perp\left(SPC\right)\Rightarrow AK=d\left(A;\left(SPC\right)\right)\)

\(AP=\dfrac{2}{3}AB=\dfrac{2a}{3}\Rightarrow CP=\sqrt{AP^2+AC^2-2AP.AC.cos60^0}=\dfrac{a\sqrt{7}}{3}\)

Áp dụng định lý hàm sin:

\(\dfrac{AP}{sin\widehat{ACP}}=\dfrac{CP}{sinA}\Rightarrow sin\widehat{ACP}=\dfrac{AP.sin60^0}{CP}=\dfrac{\sqrt{21}}{7}\)

\(\Rightarrow AH=AC.sin\widehat{ACP}=\dfrac{a\sqrt{21}}{7}\)

\(\dfrac{1}{AK^2}=\dfrac{1}{AH^2}+\dfrac{1}{SA^2}\Rightarrow AK=\dfrac{SA.AH}{\sqrt{SA^2+AH^2}}=\dfrac{2a\sqrt{93}}{31}\)

\(\Rightarrow d\left(B;\left(SPC\right)\right)=\dfrac{1}{2}AK=\dfrac{a\sqrt{93}}{31}\)

Bạn kiểm tra lại phần tính toán


Các câu hỏi tương tự
Nguyễn Mai
Xem chi tiết
Nguyễn Hiệp
Xem chi tiết
Đức Hùng Mai
Xem chi tiết
Thúy Nga
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thanh Hương
Xem chi tiết
Nguyễn Hải Vân
Xem chi tiết
Duyy Kh
Xem chi tiết
Lĩnh Nguyễn
Xem chi tiết