Ta có : \(y'=\frac{-m-3}{\left(x-1\right)^2}\)
a) Vì \(x_0=0\Rightarrow y_0=-m-1;y'\left(x_0\right)=-m-3\)
Phương trình tiếp tuyến d của \(\left(C_m\right)\) tại điểm có hoành độ \(x_0=0\) là :
\(y=\left(-m-3\right)x-m-1\)
Tiếp tuyến đi qua \(A\) khi và chỉ khi \(3=\left(-m-3\right)4-m-1\Leftrightarrow m=-\frac{16}{5}\)
b) Ta có : \(x_0=2\Rightarrow y_0=m+5;y'\left(x_0\right)=-m-3\)
Phương trình tiếp tuyến \(\Delta\) của \(\left(C_m\right)\) tại điểm có hoành độ \(x_0=2\) là :
\(y=\left(-m-3\right)\left(x-2\right)+m+5=\left(-m-3\right)x+3m+11\)
* \(\Delta\cap Ox=A\Rightarrow A\left(\frac{3m+11}{m+3};0\right)\) với \(m+3\ne0\)
* \(\Delta\cap Oy=B\Rightarrow B\left(0;3m+11\right)\)
Suy ra diện tích tam giác OAB là : \(S=\frac{1}{2}OA.OB=\frac{1}{2}\frac{\left(3m+11\right)^2}{\left|m+3\right|}\)
Theo giả thiết bài toán suy ra \(\frac{1}{2}\frac{\left(3m+11\right)^2}{\left|m+3\right|}=\frac{25}{2}\)
\(\Leftrightarrow\left(3m+11\right)^2=25\left|m+3\right|\Leftrightarrow\)\(\left[\begin{array}{nghiempt}9m^2+66m+121=25m+75\\9m^2+66m+121=-25m-75\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}9m^2+41m+46=0\\9m^2+91m+196=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}m=-2;m=-\frac{23}{9}\\m=-7;m=-\frac{28}{9}\end{array}\right.\)