Bài tập cuối chương 1

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quốc Đạt

Cho hàm số \(y=\dfrac{1}{3}x^3-x^2+4\).

a) Khảo sát và vẽ đồ thị của hàm số.

b) Tính khoảng cách giữa hai điểm cực trị của đồ thị hàm số.

Nguyễn Quốc Đạt
28 tháng 10 2024 lúc 23:21

a) Tập xác định: \(D = \mathbb{R}\)

- Chiều biến thiên:

\(y' = {x^2} - 2x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)

Trên các khoảng (\( - \infty \); 0), (2; \( + \infty \)) thì y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó. Trên khoảng (0; 2) thì y' > 0 nên hàm số đồng biến trên khoảng đó.

- Cực trị:

Hàm số đạt cực đại tại x = 0 và \({y_{cd}} = 4\)

Hàm số đạt cực tiểu tại x = 2 và \({y_{ct}} = \frac{8}{3}\)

- Các giới hạn tại vô cực:

\(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } (\frac{1}{3}{x^3} - {x^2} + 4) =  - \infty \); \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } (\frac{1}{3}{x^3} - {x^2} + 4) =  + \infty \)

Bảng biến thiên:

Khi x = 0 thì y = 4 nên (0; 4) là giao điểm của đồ thị với trục Oy

Ta có: \(y = 0 \Leftrightarrow \frac{1}{3}{x^3} - {x^2} + 4 = 0 \Leftrightarrow x =  - 1,61\)

Vậy đồ thị của hàm số giao với trục Ox tại điểm (-1,61; 0)

b) Khoảng cách giữa 2 cực trị là \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{{(4 - 8/3)}^2} + {2^2}}  \)

= \(\frac{{2\sqrt {13} }}{3}\)