a/ Để hs có GTLN là 0
\(\Leftrightarrow2m-3< 0\Rightarrow m< \frac{3}{2}\)
b/ Khi \(m>2\Rightarrow2m-3>1>0\Rightarrow\) hàm số đồng biến
\(\Rightarrow f\left(x_1\right)>f\left(x_2\right)\Leftrightarrow x_1>x_2\)
Ta có: \(\frac{3-\sqrt{3}}{\sqrt{3}-1}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=\sqrt{3}\)
\(\frac{2}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\frac{2\left(\sqrt{3}-1\right)}{2}=\sqrt{3}-1\)
\(\Rightarrow\frac{3-\sqrt{3}}{\sqrt{3}-1}>\frac{2}{\sqrt{3}+1}\Rightarrow f\left(\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)>f\left(\frac{2}{\sqrt{3}+1}\right)\)