\(\frac{1}{{{n_1}}};\frac{1}{{{n_2}}};...;\frac{1}{{{n_n}}};...\)\(\)
\(\frac{1}{{{n_1}}};\frac{1}{{{n_2}}};...;\frac{1}{{{n_n}}};...\)\(\)
Cho dãy số dương \(\left( {{u_n}} \right)\). Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) là dãy số tăng khi và chỉ khi \(\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\) với mọi \(n \in {\mathbb{N}^*}\).
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 + \frac{1}{n}\). Khẳng định \({u_n} \le 2\) với mọi \(n \in {\mathbb{N}^*}\) có đúng không?
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {n^2}\). Tính \({u_{n + 1}}\). Từ đó hãy so sánh \({u_{n + 1}}\) và \({u_n}\) với mọi \(n \in \mathbb{N}*\)
Viết năm số hạng đầu của mỗi dãy số có số hạng tổng quát \({u_n}\) cho bởi công thức sau:
a) \({u_n} = 2{n^2} + 1\)
b) \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{{2n - 1}}\)
c) \({u_n} = \frac{{{2^n}}}{n}\)
d) \({u_n} = {\left( {1 + \frac{1}{n}} \right)^n}\)
Xét tính tăng, giảm của mỗi dãy số \(\left( {{u_n}} \right)\), biết:
a) \({u_n} = \frac{{n - 3}}{{n + 2}}\)
b) \({u_n} = \frac{{{3^n}}}{{{2^n}.n!}}\)
c) \({u_n} = {\left( { - 1} \right)^n}\left( {{2^n} + 1} \right)\)
Trong các dãy số \(\left( {{u_n}} \right)\) được xác định như sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) \({u_n} = {n^2} + 2\)
b) \({u_n} = - 2n + 1\)
c) \({u_n} = \frac{1}{{{n^2} + n}}\)
a) Gọi \({u_n}\) là số chấm ở hàng thứ n trong Hình 1. Dự đoán công thức của số hạng tổng quát cho dãy số \(\left( {{u_n}} \right)\)
b) Gọi \({v_n}\) là tổng diện tích của các hình tô màu ở hành thứ n trong Hình 2 (Mỗi ô vuông nhỏ là một đơn vị diện tích). Dự đoán công thức của số hàng tổng quát cho dãy số \(\left( {{v_n}} \right)\)
- Dãy số: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 (1)
- Dãy số \(\left( {{u_n}} \right)\) được xác định bởi: Với mỗi số tự nhiên \(n \ge 1,{u_n}\) là số thập phân hữu hạn có phần số nguyên là 1 và phần thập phân là n chữ số thập phân đầu tiên đứng sau “,” của số \(\sqrt 2 \). Cụ thể là:
\({u_1} = 1,4;{u_2} = 1,41;{u_3} = 1,414;{u_4} = 1,4142;{u_5} = 1,41421;...\left( 2 \right)\)
- Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {\left( { - 2} \right)^n}\) (3)
- Dãy số \(\left( {{u_n}} \right)\) được xác định bởi: \({u_1} = 1\) và \({u_n} = {u_{n - 1}} + 2\) với mọi \(n \ge 2\,\,\left( 4 \right)\)
a) Hãy nêu cách xác định mỗi số hạng của lần lượt các dãy số (1), (2), (3), (4)
b) Từ đó hãy cho biết dãy số có thể cho bằng những cách nào.
Chứng minh rằng dãy số (un) với \({u_n} = \frac{{{n^2} + 1}}{{2{n^2} + 4}}\) là bị chặn.