Ta có:
\(f'\left(x\right)=x^3\left[f\left(x\right)\right]^2\Leftrightarrow\frac{f'\left(x\right)}{\left[f\left(x\right)\right]^2}=x^3\)
Lấy nguyên hàm hai vế:
\(\int\frac{f'\left(x\right)}{\left[f\left(x\right)\right]^2}=\int x^3\Leftrightarrow-\frac{1}{f\left(x\right)}=\frac{x^4}{4}+C\)
f(2)=-1/5 <=> \(-\frac{1}{-\frac{1}{5}}=\frac{2^4}{4}+C\Leftrightarrow C=1\)
Suy ra: \(-\frac{1}{f\left(x\right)}=\frac{x^4}{4}+1\Leftrightarrow f\left(x\right)=-\frac{4}{x^4+4}\)