Cho hai số thực x,y thỏa mãn \(x^2+y^2-xy=1\) . Tìm số thực k lớn nhất sao cho \(x^4+y^4-x^2y^2\ge k\)
1. Cho số thực x. CMR: \(x^4+5>x^2+4x\)
2. Cho số thực x, y thỏa mãn x>y. CMR: \(x^3-3x+4\ge y^3-3y\)
3. Cho a, b là số thực dương thỏa mãn \(a^2+b^2=2\). CMR: \(\left(a+b\right)^5\ge16ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
cho x,y là 2 số thực thỏa mãn \(2\left(x^2+y^2\right)+xy=1.\) tìm min và max của bth P=\(2\left(x^4+y^4+1\right)+\left(x+y\right)^2\)
cho các số thực x,y thỏa mãn \(2\left(x^2+y^2\right)=1+xy\)
tìm giá trị lớn nhất và giá trị ngỏ nhất của \(P=7\left(x^4+y^4\right)+4x^2y^2\)
cho 2 số thực x,y thỏa mãn x^2 + y^2 - 2x -1 = 0 tìm giá trị lớn nhất của biểu thức T = x- y
Cho x,y là hai số thực dương thỏa. mãn x+y=5 Giá trị nhỏ nhất của biểu thức P=\(\dfrac{4x+y}{xy}-\dfrac{2x-y}{4}\)
Cho hai số thực x,y khác 0 thay đổi và thỏa mãn đk \(\left(x+y\right)xy=x^2+y^2-xy\). GTLN của bthuc \(M=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Cho x,y là các số thực thay đổi nhưng luôn thỏa mãn \(x+2y^3+8xy\ge2\). GTNN của biểu thức \(P=8x^4+\dfrac{1}{2}y^4-2xy\)
Cho hai số thực x,y thỏa mãn \(x^{^2}+y^2=2x+4y+4\). Tìm giá trị lớn nhất của biểu thức
\(P=\sqrt{x^2+y^2+4x+2y+5}+\sqrt{6\left(x^2+y^2-4x-6y+13\right)}\)