\(VT=3\left(\dfrac{1}{4ab}+\dfrac{1}{a^2+4b^2}\right)+\dfrac{1}{2.a.2b}\ge\dfrac{12}{a^2+4ab+4b^2}+\dfrac{2}{\left(a+2b\right)^2}=14\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{2};\dfrac{1}{4}\right)\)
\(VT=3\left(\dfrac{1}{4ab}+\dfrac{1}{a^2+4b^2}\right)+\dfrac{1}{2.a.2b}\ge\dfrac{12}{a^2+4ab+4b^2}+\dfrac{2}{\left(a+2b\right)^2}=14\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{2};\dfrac{1}{4}\right)\)
Cho các số thực dương a,b thỏa mãn a+b = 4ab. Chứng minh rằng:
\(\dfrac{a}{4b^2+1}\)+\(\dfrac{b}{4a^2+1}\)≥\(\dfrac{1}{2}\)
Cho a,b là hai số thực dương thỏa mãn điều kiện \(a+b^2=2ab^2\) . Chứng minh rằng
\(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^8+2a^2b^2}\) ≥ \(\dfrac{1}{2}\)
Cho ba số thực dương a,b,c thỏa mãn abc = 1
Chứng minh rằng : \(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\) ≤ \(\dfrac{1}{2}\)
Cho ba số dương a,b,c thỏa mãn abc = 1. Chứng minh rằng :
\(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\) ≤ \(\dfrac{1}{2}\)
Cho hai số thực dương a, b thỏa mãn \(a+2b\ge3\). Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{3a^2+a^2b+\dfrac{9}{2}ab^2+\left(8+a\right)b^3}{ab}\)
Cho a,b là 2 số thực không âm thỏa mãn: \(a+b\le2\). Chứng minh:\(\dfrac{2+a}{1+a}+\dfrac{1-2b}{1+2b}\ge\dfrac{8}{7}\)
Cho các số thực dương a,b,c thỏa mãn abc = 1. Chứng minh rằng \(\dfrac{ab}{a^4+b^4+ab}\) + \(\dfrac{bc}{b^4+c^4+bc}\) + \(\dfrac{ca}{c^4+a^4+ca}\) ≤ 1
Cho a,b,c là 3 số dương thỏa mãn a+b+c=3. Chứng minh rằng :\(\dfrac{\sqrt{3a+bc}}{a+\sqrt{3a+bc}}+\dfrac{\sqrt{3b+ac}}{b+\sqrt{3b+ac}}+\dfrac{\sqrt{3c+ab}}{c+\sqrt{3c+ab}}\)≥ 2
Cho a,b,c là ba số dương thỏa mãn a + b +c = 3 . Chứng minh rằng : \(\dfrac{\sqrt{3a+bc}}{a+\sqrt{3a+bc}}+\dfrac{\sqrt{3b+ac}}{b+\sqrt{3b+ac}}+\dfrac{\sqrt{3c+ab}}{c+\sqrt{3c+ab}}\) ≥ 2